Surface Plasmon Resonance Sensors: Science and Technology

Presented by:

Optical Biosensors Technical Group

The OSA Optical Biosensors (BB) Technical Group Welcomes You!

SURFACE PLASMON RESONANCE SENSORS: SCIENCE & TECHNOLOGY

OS

10 October 2018 • 10:30 EDT

Optical Biosensors Technical Group

Technical Group Leadership

Vice Chair Priyanka Dey University of Exeter, UK

Events Leader Sachin Kumar Srivastava CSIR-CSIO, Chandigarh, India

Publication Leader Pilgyu Kang George Mason University

Industrial Relations Leader John Kohoutek McKinsey

Publication Leader Ibrahim S. Abdulhalim Ben Gurion University of the Negev

Chair Filiz Yesilkoy EPFL, Switzerland

Technical Group at a Glance

• Focus

- This group's interests are related to optical technologies for the targeted detection of biological compounds for medical diagnostics, healthcare, environmental and food safety applications.
- Over 2,000 members within OSA.

• Mission

- Promotion of the developments in the field to the society through webinars, social media, publications, technical and outreach events...
- Create a platform to enhance the community network.
- Interested in presenting your research? Have ideas for TG events? Contact: <u>filizyesilkoy@gmail.com</u>

• Find us here

- Website: <u>www.osa.org/OpticalBiosensorsTG</u>
- LinkedIn: https://www.linkedin.com/groups/8260947/
- Social Media: #OSABiosensorsTG

Today's Webinar

Surface Plasmon Resonance Sensors: Science & Technology Prof. Ibrahim S. Abdulhalim Head of Applied Nano-Photonics Group Department of Electro-Optic Engineering

Ben Gurion University of the Negev, Israel

Surface Plasmon Resonance Sensors: Science and Technology

Prof. Ibrahim Abdulhalim

abdulhlm@bgu.ac.il

http://aizena.wix.com/abdulhalim-group

Department of Electro-Optics and Photonics Engineering Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel

Motivation Global SPR Market

https://www.futuremarketinsights.com/reports/surface-plasmon-resonance-spr-systems-market

Motivation Importance to Human Health

- **Environmental pollutants detection**
- Blood analytes detection
- **Biomarkers identification/detection**
- **Drug discovery**
- **Generation Food inspection**
- •
- •
- L.....

Key Points to be Covered

> Motivation

SPR Sensing:

- > Physics of Plasmonic Sensing
- Resolution improvement with Optics/Physics
- Penetration depth enhancement
- >Self referencing
- Reading Methodologies-System

Extended versus Localized SPR

Plasmonic Field Enhancement is a Key Factor

Factors Influencing Field Enhancement

>Interference: Optical Antenna Effect: **>**Arrangement of NPs:

Plasmonics Allow the Nanoscale Enhancement

Limitations of Standard Optics

Field Intensity is Enhanced nearly 10 Million Times Near the Tip of a Silver Nanorod on Metal Film

Surface Waves and Sensing

- Field penetrates few hundred nm and more in the analyte!
- □ Field enhancement at the interface ~x10-20
- Sensitivity ~1000-50000nm/RIU

- □ Field penetrates few nm in the analyte. Highly localized!
 - Field enhancement at the interface is ~x20-100
- Sensitivity ~100-500nm/RIU

Extended Plasmonic Waves

$$k_{x} = \frac{2\pi}{\lambda} n_{c} \sin \theta_{c} \pm \frac{2\pi}{\Lambda} j = \frac{2\pi}{\lambda} \operatorname{Re}\left\{\left(\frac{n_{m}^{2} n_{a,s}^{2}}{n_{m}^{2} + n_{a,s}^{2}}\right)^{1/2}\right\} = \operatorname{Re}\left\{k_{sp}\right\}$$

Plasmonics is the Science and Technology Dealing with Surface Plasmon Waves

SPW- (Surface Plasmon Wave) : Is a charge density wave occurring at the interface between a metal and a dielectric.

Metal \mathcal{E}_m $\left\{ \stackrel{\rightarrow}{E}_{m}, \stackrel{\rightarrow}{H}_{m} \right\}$ K_{SP} d_m $\left\{ \stackrel{
ightarrow}{E}_{a},\stackrel{
ightarrow}{H}_{a}
ight\}$ **Dielectric** \mathcal{E}_{a} \overline{Z}

Momentum of Propagating SP

Plasmon propagation K vector:

In the infinite metal thickness limit:

medium i:

$$H_{yi} = H_{0i} \cdot \exp i(k_x x - \omega t) \cdot \exp(ik_i z)$$

:
$$E_{xi} = \frac{H_{0i}}{\omega \varepsilon_0} \left(\frac{k_i}{\varepsilon_i}\right) \cdot \exp i(k_x x - \omega t) \cdot \exp(ik_i z)$$

$$E_{zi} = \frac{-H_{0i} \cdot k_x}{\omega \varepsilon_0} \left(\frac{1}{\varepsilon_i}\right) \cdot \exp i(k_x x - \omega t) \cdot \exp(ik_i z)$$

Applying the continuity relations of the tangential field's components (E_{xi} , H_{vi}):

$$k_{sp} = k_0 \operatorname{Re}\left\{\sqrt{\frac{\varepsilon_m \varepsilon_a}{\varepsilon_m + \varepsilon_a}}\right\} \Rightarrow k_x = \operatorname{Re}\left\{k_{sp}\right\} = k_0 \sqrt{\frac{\varepsilon_m \varepsilon_a}{\varepsilon_m + \varepsilon_a}} \quad 2^{nd} \text{ condition!}$$

$$k_s = k_0 n_i \sin \theta_i \Rightarrow \sin \theta_{spr} = \frac{1}{n_i} \sqrt{\frac{\varepsilon_m \varepsilon_a}{\varepsilon_m + \varepsilon_a}} \quad \text{Since} \quad \varepsilon_m < 0 \text{ hen the}$$

$$3^{rd} \text{ condition!} \text{ is: } |\varepsilon_m | > \varepsilon_a$$

Two Important Parameters

Penetration Depths

Propagation Length

Silver as an Example

Exciting SPR- Prism Coupling

Introducing the Drude model for the metal permittivity gives the dispersion relation of the SP:

Prism Coupling-General Setup

Angular and Spectral Modes for Sensing

Sensing in the KR configuration

$$S_{\theta} = \frac{\partial \theta_{dip}}{\partial n_a} = \frac{\varepsilon_{mr}\sqrt{-\varepsilon_{mr}}}{(\varepsilon_{mr} + n_a^2)\sqrt{\varepsilon_{mr}(n_a^2 - n_p^2) - n_p^2 n_a^2}}$$

$$FOM = \frac{S_{\theta,\lambda}}{FWHM}$$

- Angular Sensitivity: ~100-200 deg/RIU
- Spectral sensitivity: ~1000-30000nm/RIU

$$S_{\lambda} = \frac{\partial \lambda}{\partial n_a} = \frac{\varepsilon_{mr}^2}{\frac{n_a^3}{\lambda} \left| \frac{d\varepsilon_{mr}}{d\lambda} \right| + (n_a^2 + \varepsilon_{mr})\varepsilon_{mr} \frac{dn_p}{d\lambda} \frac{n_a}{n_p}}{\frac{d\lambda}{\lambda} n_p}$$

Sensitivity and Detection Limit (Resolution)

$$S_{\theta} = \frac{\Delta \theta}{\Delta n}, \quad S_{\lambda} = \frac{\Delta \lambda}{\Delta n}, \quad S_{R} = \frac{\Delta R}{\Delta n}$$
$$DL_{\theta} = \langle \Delta n \rangle_{\min} = \frac{\langle \Delta \theta \rangle_{\min}}{S_{\theta}}$$
$$DL_{\lambda} = \langle \Delta n \rangle_{\min} = \frac{\langle \Delta \lambda \rangle_{\min}}{S_{\lambda}}$$
$$DL_{R} = \langle \Delta n \rangle_{\min} = \frac{\langle \Delta R \rangle_{\min}}{S_{R}}$$
$$FoM = \frac{S_{\lambda,\theta,R}}{FWHM}$$
$$S_{\theta}, \quad S_{\lambda} \implies Physics / Optics / Materials$$

 $\langle \Delta \theta \rangle_{\min}, \langle \Delta \lambda \rangle_{\min} >$ System

Existing Methods for Sensitivity Enhancement of SPR Sensors

Phase SPR (Polarimetric, Ellipsometric)

EM Field Enhancement at the Resonance

A. Shalabney and I. Abdulhalim, Sensors and Actuators A, 159, 24-32 (2010).

Evanescent Field Sensing

$$\varepsilon = \begin{cases} n_w^2 & r \in V_w \\ n_{a,s}^2 & r \notin V_w \end{cases}$$

Analyte

Substrate

Confinement region

Assuming a particle is added to the analyte, it creates a variation in the dielectric function:

The wave vector will change by: $\delta k = k_f - k_i$ and the field from: E_i to E_f

$n_a V_p$

n_w/ n_s

Evanescent Field Sensing

$$\nabla x \nabla x E_i = k_i^2 \varepsilon E_i$$

$$\nabla x \nabla x E_f = k_f^2 (\varepsilon + \delta \varepsilon) E_f$$

Multiplying by E_i^* and integrating over the entire volume and subtracting yields:

$$(k_i^2 - k_f^2) \int_V E_f \cdot \mathcal{E}_i^* dr = k_f^2 \int_{V_{\text{int}}} E_i^* \cdot \mathcal{E}_E E_f dr$$

 δk

The shift in the wave vector is equal to the overlap integral normalized by the mode energy integral. Sensing in the evanescence region!

$$\delta k \approx -\frac{k_i}{2} \frac{\int \delta \varepsilon E_i^* \cdot E_f dr}{\int V_{int}}$$

Correlation Between EM Intensity and Sensitivity Enhancement

Correlation Between EM Intensity and Sensitivity Enhancement

Case of adding nano-overlayer with high refractive index on top of the metal layer!

A. Shalabney and I. Abdulhalim, Sensors and Actuators A:physical, 159 (2010) 24-32

1st case: Adding top nano-dielectric Layer

Amit Lanav, Mark Auslender and **I. Abdulnalim**, Sensitivity enhancement of guided wave surface plasmon resonance sensors, Opt.Lett. 33, 2539-2541 (2008).

1st case: Adding top nano-dielectric Layer

Amit Lahav, Mark Auslender and I. Abdulhalim, Sensitivity enhancement of guided wave surface plasmon resonance sensors, Opt.Lett. 33, 2539-2541 (2008).

Amit Lahav, Atef Shalabney, I. Abdulhalim, Surface plasmon resonance sensor with enhanced sensitivity using nano-top dielectric layer, Journal of Nano-photonics 3, 031501 (2009.

Sabine Szunerits, Atef Shalabney, Rabah Boukherroub and I. Abdulhalim, Dielectric coated plasmonic interfaces: their interest for sensitive sensing of analyte-ligand interactions, Anal.Chem. 31, 15-28 (2012).

Angle of incidence (deg)

90

Improving the FoM with top Nanofilm

NGWSPR- spectral interrogation- dip narrowing

The incident angle is adjusted for both SPR and NGWSPR to determine the wavelength location

A. Shalabney and I. Abdulhalim, Optics Letters, 37(7), (2012)

Improving the S-FoM with top Nanofilm

- Same incidence angle
- Larger EM fields
- Larger sensitivity
- Larger penetration depth
- ≻Larger FOM

A. Shalabney and I. Abdulhalim Optics Letters, 37(7), (2012)

It Enables Detecting Bacteria with NIR

Wavelength (nm)

2nd Case: Porosity Effect - nSTFs

SPR at Different Porosities

Sensitivity Increases with Porosity

Field Enhancement with Porosity

System Simplification and Improved Precision

DI

1:5 by volume

DMSO/ DI

System Miniaturization

2	PhotonicSys - SPR System	- 🗆 🖬 🗙 👘
Start \ Stop	Response to Variations in Conc	entration :::
Measurement parameters	1.4- 1.39-	1.387863 rd deviation: 0.000002
Camera attributes	1.38-	
^	₽ 1.35- 1.34-	
Switch to Camera display	1.33-	
Choose the number of sampes for statistical calculation	1.3- 0 20 40 60 80 100 120 140 Time [sec]	
Type R.I range to present (i.e. 1.3-1.4)		
~	Renards Solution	s.com
With permission from: www	v.photonicsys.com	uaubo ^o

The Field Penetration Depth Importance

Ultra-high Penetration Depth Self Referenced GW-SPR Sensor

Experimental Confirmation

Sivan Issacs et.al., Long range surface plasmon resonance with ultrahigh penetration depth for selfreferenced sensing and ultralow detection limit using diverging beam approach, Appl.Phys.Lett. 106, 193701-4 (2015).

Self Referenced SPR with Grating Coupling

- Sachin K. Srivastava and Ibrahim Abdulhalim, Opt. Lett. 40, 2425-28 (2015).
- Olga Krasnykov et.al., Opt.Commu. 284, 1435-1438 (2011).
- Alina Karabchevsky, et.al., Journal of Plasmonics, 4, 281-292 (2009).

Self Referenced SPR Thin Dielectric Grating Coupling on Thin Metal Film

M. Abutoama et.al., Optics Express 23, 28667-82 (2015) and IEEE J. Selected Topics in Quantum Electronics, 23, 4600309 (2017).

Summary and Future Trends

SPR biosensors have a large growing market
 Field of interest are environmental sensing and health

 SPR Physics/optics allows for many different modes with variety of improvements in the performance. All originates from the EM field distribution/enhancement
 SPR systems can be miniaturized made portable and cheap.

For the future specific sensing should be developed more through binding layers development