

OSA Webinar, online

Topological and Non-Hermitian Electromagnetism

Mário G. Silveirinha

1st Part: Non-Hermitian Electromagnetism

Some old problems of classical electromagnetism

The electron self-field

"The theory of electron is not complete because it is not theoretically self-consistent... the charge produces an electric field around the electron... if we assume that the charge is concentrated at one point the electron force approaches infinity as one approaches this point..."

[P. Dirac, Lindau Lecture, 1956]

For a point particle, the self-energy and the self-field are infinitely large

Lisboa, 30th April, mario.silveirinha@co.it.pt

5

Paths for a solution

• Quantum electrodynamics fixes the problem?

Not exactly: QED is plagued with the same problems as classical theory -> solved with renormalization

"... many infinities have been swept under the rug of a field-theorist's office..."

Paths for a solution (contd.)

• Perhaps the Maxwell's equations (Coulomb's force) need to be modified to avoid the fields singularity? [e.g., Born-Infeld theory]

Maybe the electron is not a point particle?

• Other idea?

Other failures of classical theory (only solved by quantum theory)

Electron spin Wave-particle duality Quantization of energy, etc

New starting point:

Non-Hermitian Electromagnetism

M.G. Silveirinha, Non-Hermitian Electromagnetism: a Nonlocal Time-Crystal Model for an Electron with Spin

Lisboa, 30th April, mario.silveirinha@co.it.pt

Hermitian physics

Hermitian physics = "energy" conserving dynamics

Hamilton, 1830

Non-Hermitian (without an Hamiltonian) approach to the theory of the electron

Why non-Hermitian?

The vacuum is not empty space

Lisboa, 30th April,

April, mario.silveirinha@co.it.pt

Bouncing droplets (by Yves Couder)

www.youtube.com/watch?v=W9yWv5dqSKk

Yves Couder and Emmanuel Fort, Single-Particle Diffraction and Interference at a Macroscopic Scale, Phys. Rev. Lett. 97, 154101, 2006

Lisboa, 30th April,

30th April, mario.silveirinha@co.it.pt

Bouncing droplets (by Yves Couder)

Yves Couder and Emmanuel Fort, Single-Particle Diffraction and Interference at a Macroscopic Scale, Phys. Rev. Lett. 97, 154101, 2006

Lisboa, 30th April,

How to do physics without an Hamiltonian?

A little inspiration from Feynman:

"There is one lucky break, however—<u>electrons behave just like light</u>. The quantum behavior of atomic objects... is the same for all, they are all particle-waves...".

"Electrons behave just like light"

A seemingly absurd proposal:

How far can one go with these postulates?

Lisboa, 30th April, mario.silveirinha@co.it.pt

16

Some insight: planar trajectories

Lisboa, 30th April, mario.silveirinha@co.it.pt

Where things start getting interesting

 $(S \cdot \beta, S)$ transforms as a 4-vector under a Lorentz boost

Energy-momentum 4-vector

Lisboa, 30th April, mario.silveirinha@co.it.pt

The elephant in the zoom

Co-moving frame

Co-moving frame (properties)

• For each time instant there is a unique inertial frame that satisfies the definition.

• The velocity of the co-moving frame depends only on kinematic parameters and on the energy of the electron

• The co-moving frame transforms in a Lorentz co-variant manner.

• It is possible to derive a (purely kinematic) dynamical law for the spin vector in terms of the velocity of the co-moving frame

The flow of ideas

Lisboa, 30th April, mario.silveirinha@co.it.pt

Massive energy-momentum 4-vector

$$E = \gamma m_{\rm e} c^2 \qquad \pi = m_{\rm e} \gamma c \mathcal{V} \qquad \gamma = 1/\sqrt{1 - \mathcal{V} \cdot \mathcal{V}}$$

(E, π) transforms as 4-vector because \mathcal{V} transforms as a velocity under a Lorentz boost!

<u>The full picture</u>: 3 energy-momentum 4-vectors associated with the non-Hermitian electron

Coming full circle: from massless to massive

The non-Hermitian electron is a <u>two-component point</u> particle

Mass is an emergent property!

Lisboa, 30th April,

Pilot-wave model

De Broglie – Bohm interpretation of quantum mechanics: realism and determinism

youtube.com/watch?v=r0plv_nlzsQ

An electron is (literally) a particle and a wave: the particle rides the wave

Pilot-wave mechanical model

Lisboa, 30th April, mario.silveirinha@co.it.pt

Self-field free of infinities!

Free-particle states

Free-particle

• No external fields; self-force is neglected (but self-energy is taken into account)

• The center of mass of a free-particle moves with constant velocity.

• In the <u>co-moving frame</u>, the trajectory of the electron "wave"component is planar with the spin vector perpendicular to the plane of motion. The center of mass (particle-component) is motionless

* Coined in A. Shapere and F. Wilczek, "Classical Time Crystals", Phys. Rev. Lett. 109, 160402, (2012).

Lisboa, 30th April,

th April, mario.silveirinha@co.it.pt

Spin angular momentum

 $\mathcal{L}_{spin} = \mathbf{R} \times \mathcal{P}$

Lisboa, 30th April, mario.silveirinha@co.it.pt

Dispersion of time-crystal states:

 $T_{\text{super}} = \text{period of the super-orbit}$ $\langle R \rangle = \text{average radius of the super-orbit}$

$$\omega_{\rm super} = \frac{2\pi}{T_{\rm super}}$$

Dispersion of time-crystal states:

Time period vs. <R>/R_0

Double-slit experiment

Feynman, Vol. III:

We shall tackle immediately the basic element of the mysterious behavior in its most strange form. We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery...

Screen with two slits (I)

Spin up electron goes through a single slit

Screen with two slits (II)

Spin up electron goes through both slits

Excitation by an external field

Landau problem (electron under the influence of a static magnetic field)

Spin down

Epicycles and Ptolemy (before Copernicus)

tinyurl.com/yepcwv46

Partial summary

• I introduced a Lorentz covariant non-Hermitian theory of the electron.

•Relying on minimal hypotheses (postulates) the proposed theory leads naturally to the idea that a charged particle is formed by two (particle-like and wave-like) components.

•The proposed model may be regarded as some sort of <u>mechanical version</u> of the pilot-wave model of de Broglie-Bohm.

M.G. Silveirinha, Non-Hermitian Electromagnetism: a Nonlocal Time-Crystal Model for an Electron with Spin

Partial summary (contd.)

•Unlike the usual classical models, the self-field and self-energy of the non-Hermitian electron are finite.

•The non-Hermitian electron has spin and a spin angular momentum that is precisely quantized.

•The theory may shed some light on the inner workings of the "double slit experiment" and suggests that some of the weirdness of quantum physics may be captured by mechanical non-Hermitian models.

> *M.G. Silveirinha,* Non-Hermitian Electromagnetism: a Nonlocal Time-Crystal Model for an Electron with Spin

Lisboa, 30th April, mario.silveirinha@co.it.pt

2nd Part: Link between topological photonics and geometry of surfaces

