Topological nanophotonics based on semiconductor photonic crystals

Satoshi Iwamoto

Research Center for Advance Science and Technology, the University of Tokyo Institute of Industrial Science, the University of Tokyo

e-mail: iwamoto@iis.u-tokyo.ac.jp

Web: http://www.iwamoto.iis.u-tokyo.ac.jp/en/index.html

Contents

- ✓ Topological photonics: What and Why?
- ✓ How to get photonic topological states in photonic crystal
- Topological photonic crystal nanobeam cavity
- ✓ Valley photonic crystal and topological slow-light waveguide
- ✓ Summary

Topology: from condensed matter physics to photonics

S. Oh, Science 340, 153 (2013).

Topological edge states of electrons

Electron transport without dissipation

- ✓ Immune to disorders
- ✓ Suppressed back scattering
- ✓ Strong unidirectionality

Novel devices in electronics and spintronics

In photonics? \rightarrow Yes

Topological photonics

PRL 100, 013904 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry

F. D. M. Haldane and S. Raghu*

Department of Physics, Princeton University, Princeton, New Jersey 08544-0708, USA (Received 23 March 2005; revised manuscript received 30 May 2007; published 10 January 2008)

We show how, in principle, to construct <u>analogs of quantum Hall edge states</u> in "photonic crystals" made with nonreciprocal (Faraday-effect) media. These form "one-way waveguides" that allow electromagnetic energy to flow in one direction only.

First demonstration @microwave (2009)

Topological photonic crystal

Growing attention

Source: Web of Science

Number of publications

Some of main platforms for topological photonics

Visible to NIR

Waveguide array

> cm

M. C. Rechtsman *et al.*, Nature **496**, 196 (2013).

Ring cavities

~mm

M. Hafezi *et al.*, Nat. Phys. 7, 907 (2011). Nat. Photonics 7, 1001 (2013)

Topological lasers

H. Zhao et al., Nat. Commun. 9, 981 (2018).

M. Parto et al., Phys. Rev. Lett. 120, 113901 (2018)

M. A. Bandres et al., Science 359 eaar4005 (2018).

A. Dikopoltsev et al., Science 373, 1514 (2021)

Some of main platforms for topological photonics

Photonic waveguide robust against defects and sharp turns

Useful in future highly-integrated photonic circuits Novel optical devices

Topological photonics for integrated photonics

Topological photonics based on semiconductor PhCs

- ✓ Compatible with the present PIC technology
- Potential ability to miniaturize devices

T. Yamaguchi, et al., APEX 12, 62005 (2019)

Y. Ota et al., Optica **6** 786 (2019).

Photonic waveguides and cavities exploiting topological edge states Highly efficient lasers and other functional devices

> Review paper: S. Iwamoto *et al.*, Opt. Mater. Express **11**, 319 (2021) Y. Ota et al., Nanophotonics **9**, 547 (2020).

How to get topological edge states

Topological PhC nanobeam cavity

Y. Ota, S. Iwamoto *et al.*, Communications Physics 1, 86 (2018).

Topological PhC nanobeam cavity

Y. Ota, S. Iwamoto et al., Communications Physics 1, 86 (2018).

PhC nanobeam with 2 holes in unit cell: band diagram

No difference in photonic band diagram →Need to investigate field distributions

PhC nanobeam with 2 holes in unit cell: mode distributions

PhC nanobeam with 2 holes in unit cell: band inversion

Topological edge state: localized cavity mode

Topological PhC nanocavity: µ-PL

Lasing oscillation in Zak-phase controlled 1D PhC nanobeam cavity

 μ -PL characterization at 15K

Excitation: intensity-modulated LD (808nm, 0.5 MHz repetition, 20 ns pulse duration)

Y. Ota, S. Iwamoto et al., Communications Physics 1, 86 (2018).

1D topological lasers: robustness

✓ Robust single mode operation is expected

Valley photonic crystal and topological slow-light waveguide

Photonic graphene

Photonic Dirac point at K(K')

Photonic topological phases and edge states in 2D PhCs

Valley Photonic Crystals

Originally proposed by T. Ma and G. Shvets, New J. Phys. 18, 025012 (2016).

Topological edge states (valley kink states) appear at the interface

Semiconductor-based Integrated VPhC Waveguides

M. I. Shalaev *et al.*, Nat. Nanotechnol. **14**, 31 (2019). X. –T. He *et al.*, Nat. Commun. **10**, 872 (2019).

T. Yamaguchi *et al*, Appl. Phys. Express **12**, 062005 (2019).

J. Ma *et al*., Laser Photonics Rev. **13**, 1900087 (2019)

-S. Barik *et al.*, Phys. Rev. B **101**, 205303 (2020)

VPhC waveguide enables efficient light propagation through sharp bends Potential applications in densely-integrated low-loss photonic circuits

Valley Photonic Crystal

Valley Photonic Crystal

Edge State at Zigzag Interface of VPhCs

- \checkmark An edge state at each interface
- ✓ Edge states locate below light line

Light line problem

Photonic QSH system

based on band holding scheme proposed by Wu and Hu, PRL **114**, 223901 (2015).

Edge states above light line →radiation loss →limit the propagation length

Photonic QVH system

Edge states **below** light line

 \rightarrow no radiation loss

 \rightarrow suitable for waveguide applications

Impact of radiation loss

CW @ 1.1 μm , **3D-FDTD**

VPhC is beneficial for waveguide application

Conventional PhC waveguide vs valley PhC waveguide

W1-type PhC WG

Scattering at corners

VPhC: suppressed scattering at corners, high transmittance

Quantitative analysis

Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths Light: Sci. Appl. **10**, 9 (2021).

S. Arora,^{1,*} T. Bauer,^{1,*} R. Barczyk,^{2,*} E. Verhagen,² and L. Kuipers^{1,†}

¹Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA, Delft, The Netherlands

²Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

(Dated: August 17, 2020)

Slow light devices

- ✓ More sensitive to disorder
- ✓ Difficult to bend slow light efficiently

Zigzag interface and bearded interface

Waveguide modes at bearded interface

Band degeneracy at the Brillouin edge ← due to glide plane symmetry Bands tend to flat at the Brillouin edge →slow-light topological mode !?

Slow light topological edge state in VPhC

 $L_{\rm L} = 1.3 a / \sqrt{3}, L_{\rm S} = 0.7 a / \sqrt{3}$

H. Yoshimi et al., Opt. Lett. 45, 2648 (2020).

Which band is topological?

Topological edge state corresponds to the lower frequency band

Experimental demonstration

NIR Images

Efficient guiding of slow light under the presence of sharp bends

Applications

✓ Topologically-protected single photon source with Purcell enhancement K. Kuruma *et al.*, CLEO2021 FW4I.2 (2021)

 $\checkmark\,$ Ring-cavity laser with topological slow light mode

R. Miyazaki et al., SSDM 2021 E-5-04 (2021)

Other related topics

- \checkmark Visible and THz
- ✓ Topological lasers

Visible and THz

Topological lasers in 2D PhCs

Trivial

5 µm

Z. -K. Shao et al., Nat. Nanotech. 15, 67 (2020).

Valley king state in Photonic QVH

W. Noh et al., Opt. Lett. 45, 4108 (2020).

Input power density (µW/µm²)

THz (cascade laser)

Y. Zeng et al., Nature 578, 246 (2020).

Other related topics

- \checkmark Visible and THz
- ✓ Topological lasers
- ✓ Nonlinear optics
- ✓ Quantum Optics
- ✓ Topological localized states in 2D PhCs
 - Corner state, Dirac vortex, Topological defect
- \checkmark Synthetic dimension
- ✓ 3D topological photonics
- ✓ Non-Hermitian photonics and many

See also our related papers:

- ✓ Topological lasers: N. Ishida, S. Iwamoto et al., arXiv:2108.11901 (2021).
- ✓ Corner state: Y. Ota, S. Iwamoto *et al.*, Optica **6** 786 (2019).
- ✓ Synthetic dimension: A. Balčytis, T. Baba, S. Iwamoto *et al.*, arXiv:2105.13742 (2021)
- ✓ 3D topological photonics: S. Takahashi, S. Iwamoto *et al.*, Opt. Express **29**, 27127 (2019).
- ✓ Non-Hermitian PhC: C. F. Fong, S. Iwamoto *et al.*, Phys. Rev. Research **3**, 043096 (2021).

Summary

 ✓ Semiconductor-based topological PhCs for future integrated photonic circuit technology

✓ Topological nanocavity in 1D nanobeam PhC

- Simple example
- Deterministic design of single cavity mode
- ✓ Valley photonic crystal
 - All dielectric structure
 - Valley kink state enabling robust light propagation
- ✓ Topological slow-light waveguide using a valley kink state
- Topology + nanophotonics can lead breakthroughs in future integrated photonics

Acknowledgements

Collaborators

Yasutomo Ota (Keio Univ.) Takuto Yamaguchi (valley) Hironobu Yoshimi (valley)

Wenbo Lin (Poincare and related) Natsuko Ishida (SSH laser) (Univ. of Tokyo)

Shun Takahashi (Kyoto Inst. Technol.) (Weyl, 3D) Toshihiko Baba (Yokohama Nat. Univ.) (Synthetic dimension) Yasuhiro Hatsugai (Tsukuba Univ.) (Theory) Katsunori Wakabayashi (Kwansei Gakuin Univ.)(Theory) Tomoki Ozawa (Tohoku Univ.) (Theory) Katsuyuki Watanabe and Yasuhiko Arakawa (Univ. of Tokyo) (QD growth) Nobukiyo Kobayashi (DENJIKEN) (MO material)

Group Photo (June, 2020)

Funding

MEXT KAKENHI (15H05700, 15H05868, 17H02796, 17H06138, and 19K21959) JST CREST(JPMJCR19T1), NEDO FS, Asahi Glass Foundation, Nippon Sheet Glass Foundation