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2021 — Sixty years of nonlinear optics !

The high power and spatial coherence of laser light enabled the study of the nonlinear
response of light to optical fields
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GENERATION OF OPTICAL HARMONICS®
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Alan Hill was an undergraduate! In the experiments we have used a commerci-

ally available ruby optical maser? which produces
approximately 3 joules of 6943A light in a one-
millisecond pulse.

(the experimental evidence was removed as a speck of dirt on the photographic plate)



Luckily they were republished elsewhere !

© 1964 SCIENTIFIC AMERICAN, INC

The Interaction of Lighl_. with Light

h}-' 1. A. Giordmaine

RUBY LASER
FOCUSING LENS

6,943 ANGSTROMS

QUARTZ CRYSTAL PRISM AN

FIRST DEMONSTRATION that ultravielet light could be gen-
erated by the intense flash of a ruby laser was made with this ex-
perimental arrangement in 1961 at the University of Michigan. The
investigators were Peter A. Franken, Allen E. Hill, C. W. Peters

and Gabriel Weinreich. The quartz erystal converted only a hun-
dred-millionth of the incident light to ultraviolet light. On be-
ing passed through a prism the ultraviolet is bent more than the red
laser light and the two can be photographed separately (see below).

FIRST PHOTOGRAPHS of second-harmonic ultraviolet light were

made by Franken and his associates. In each case the amount of

ultraviolet (small spots at 3,471.5 angstroms) is roughly propor-
tional to the square of the amount of red light at 6,943 angstroms.




Nonlinear optics was actually considered earlier: 1926, 1930, 1950

120 SEPTEMBER 1996

More on Vavilov’s
Contributions to
20th-century Physics

What Yuri Nikolaievitch and his
colleague omitted to say, but may be
of interest to your readers, is that Ser-
gei Vavilov was probably the first sci-
entist to observe a nonlinear optic ef-
fect. In 1926, with Vadim L. Levshin,
he found a reduction in the absorp-
tion of light by uranium glass with
an increase of intensity of 454 nm
light from a high-intensity spark
source.! And it was Vavilov who intro-
duced the term “nonlinear optics’ into
the literature, in a passage in his
1950 book Mikrostruktura sveta (“The
Microstructure of Light ).

PHYSICS TODAY
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Uber Elementarakte mit zwei Quantenspriingen
Von Maria Giéppert-Mayer
(Gdttinger Dissertation)
{Mit 5 Figuren)

Hinleitung
Der erste Teil dieser Arbeit beschiftigt sich mit dem
Zusammenwirken zweier Lichtquanten in einem Elementarakt.
Mit Hilfe der Diracschen Dispersionstheorie?) wird die Wahr-
scheinlichkeit eines dem Ramaneflekt analogen Prozesses,
nidmlich der Simultanemission zweier Lichtquanten, berechnet.
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‘ Motivation and Overview — Extreme Events

Extreme events are defined by rarity, unpredictability, and often highly destructive impact

Natural disasters



Motivation and Overview — Extreme Events

Extreme events are defined by rarity, unpredictability, and often highly destructive impact

M.V, K. Sivakumar

MANAGING THE RISKS OF EXTREME R. P Motha
EVENTS AND DISASTERS TO ADVANCE S0 T H. P Dias

~ Natural
Disasters
and Extreme
Events

in Agrlculture _

CLIMATE CHANGE ADAPTATION

EXTREME
EVENTS IN

NATURE AND

SOCIETY

H

PECIAL REPORT OF THE 2
INTERGOVERNMENTAL PANEL | cc !!
ON CLIMATE CHANGE

This has created a new interdisciplinary field of science combining areas of specific
expertise (geology, climate, hydrodynamics) with statistics, physics, simulations etc.



Rogue waves are a particular type of extreme event

Rogue waves are large and destructive waves that appear on the ocean’s surface, outside
the range of amplitudes expected from standard linear wave theory

Polar Trader Bound for Valdez
e Paay ok Winter 2001

7 February 1933
~200m

line erest up with horizon
s ~34m
\
u

Fig. 1.2 Observation of the highest reported wave by the crew members of
“Ramapo” (Dennis and Wolff 1996)




Rogue waves appear in the long tail of wave height distributions

The Draupner Wave of 1995 went beyond
anecdote & provided quantitative data
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Long term wave height measurements
show asymmetric distributions. Rogue
waves are “extreme events” in the tails,
beyond the predicted Rayleigh distribution

20 —

" (%) 1980-2003

Probability
|

0 12 3 4 5 6 7 8 9 10 11 m

Wave Height
M. S. Longuet-Higgins Journal of Marine Research 11, 245-266 (1952)




‘ In 2007, “optical rogue waves” were reported in the supercontinuum

Optical rogue waves appeared in noisy fibre supercontinuum generation that showed a
long-tailed distribution in intensity fluctuations at particular wavelengths

namre Vol 45013 December 2007 |doi10.1038 /nature06402

Optical rogue waves

D. R. Solli’, C. Rnpersl':, P. Koonath' & B. Jalali'

Real-time measurement of

Monlinear medium pulse trains
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It is important to appreciate the context here

Supercontinuum generation was only possible because of the photonic crystal fiber
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“Photonic Bloch waves,” NATO ASI, Erice, Sicily, July 1993 Y

Single material (silica)
high air-fill fraction
photonic crystal fibre (PCF)

Wavelength (xm)

Dispersion engineering allows fibre zero
dispersion wavelength to be matched to
readily-available fs sources

The photonic crystal fiber concept celebrated its 30" birthday in 2021 !!




Google now appreciates fibre optics!

Reliable techniques for fabricating small-core waveguides yielded the birth of fibre optics

PROC. IEE, Vol. 113, No. 7, JULY 1966

Dielectric-fibre surface waveguides for
optical frequencies

1933-2018
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Google Search I'm Feeling Lucky

e Details: (i) total internal reflection
ti The Nobel Prize in Physics 2009 (i) the binary sequences converted to ASCII spell KA O



The femtosecond Ti:Sapphire laser also celebrates its 30t" birthday

It was the injection of femtosecond pulses from a Ti:Sapphire into the PCF that led to
the supercontinuum

42 OPTICS LETTERS / Vol. 16, No. 1 / January 1, 1991

J. Opt. Soc. Am. B/Vol. 8, No. 10/October 1991

December 15, 1991 / Vol. 16, No. 24 / OPTICS LETTERS
60-fsec pulse generation from a self-mode-locked Ti:sapphire

laser Structures for additive pulse mode locking

Mode locking in solitary lasers
D. E. Spence, P. N. Kean, and W. Sibbett
J. F. Allen Physics Research Laboratories, Department of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews,

H. A. Haus, J. G. Fujimoto, and E. P. Ippen
Fife, KY16 9S8, Scotland
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We assume that all effects per pass are small and, there- -
Mo My fore, additive. In the steady state all changes must add to s =T (1)
O* i RO i zero. This fact leads to the master equation:
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Fig. 1. Schematic of the cavity configuration for self-mode-

locked Ti:Al;O; laser. The inset shows the intracavity

Fig. 1. Schematic of the solitary laser.
prism sequence for dispersion compensation.

RN AN

The discovery of self-modelocking led to the transfer of soliton concepts into ultrafast
laser design, and the concept of the “dissipative soliton” laser




The femtosecond Ti:Sapphire laser also celebrates its 30t" birthday

The Kerr lens modelocked Ti:Sapphire oscillates with a spatio-temporal balance between

42 OPTICS LETTERS / Vol. 16, No. 1 / January 1, 1991

~

dispersion-managed temporal solitons and diffraction-managed spatial solitons
p

60-fsec pulse generation from a self-mode-locked Ti:sapphire
laser

D. E. Spence, P. N. Kean, and W. Sibbett

J. F. Allen Physics Research Laboratories, Department of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrew:
Fife, KY16 9S8, Scotland

Received July 20, 1990; accepted November 2, 1990
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Fig. 1. Schematic of the cavity configuration for self-mode-
locked Ti:Al,O; laser.

The inset shows the intracavity
prism sequence for dispersion compensation.

An =n, (1)
MNonlinear medium

Kerr lens Aperture
Intense pulse

Low intensity light

W Sibbett et al. The development and application of
femtosecond laser systems Optics Express 20 6989-7001 (2012)



1964 — nonlinear self-focusing and solitons in optics

OPN Optics & Photonics News November 2010

How th_e Laser Launc_hed
Nonlinear Optics

Jeff Hecht

Self-
focusing

Diffraction

C! : |
Self-trapped
' ! | soliton

it

Firing a Q-switched ruby pulse
through an /20 lens produced
a long, thin damage zone that

revealed self-trapping.

Courtesy of Michael Hercher



‘ 1964 — Townes theory & the nonlinear Schrodinger equation (NLSE)

In the case where £, depends only on y, and
Vorums 13, Numsiz 15 PHYSICAL REVIEW LETTERS 12 OctonEn 1964 under the assumption of linear polarization,

SELF-TRAPPING OF OPTICAL BEAMS*

_ d? €
R. Y. Chiao, E. Garmire, and C. H. T e— - —ap 2 3 =
Massachusetts J:n;talﬁlte of T::::ul:g_','.agamﬁrlzﬁe.u;ma::achuxeus d}’ Et(_ﬂ [ﬂEt{y} + 2 ku Et (}’] D" (5}

{Received 1 September 1964)

If Ef represents a slab-shaped beam, confined
in the y direction, the boundary conditions are
E(y)=0asy—-«and dE/dy =0 at y =0. This ex-
cludes periodic solutions, so that I*>0. A me-
chanical analog of (5) is a particle in a double-
well guartic potential-energy function. It is im-
mediate from consideration of this analog that

there is a unique solution which is not oscillatory,
dielectric waveguide modes appears to be possi- namely £,(y)=E,(0)/coshl'y, where [ must equal

ble in intense laser beams, and to produce 3€9' "%k oE,(0). Note that, given a certain size of
marked optical and physical effects. the beam (~1/rI), the field inside the beam must
attain a value Et{ﬂ} for trapping.

We shall discuss here conditions under which
an electromagnetic beam can produce its own
dielectric waveguide and propagate without spread-
ing. This may occur in materials whose dielec-
tric constant increases with field intensity, but
which are quite homogeneous in the absence of
the electromagnetic wave. Such self-trapping in

First statement of the cubic NLSE in optics & sech-soliton solution



‘ Actually not the first statement of the NLSE

-
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SOVIET PHYSICS JETP VOLUME 23, NUMBER 6 DECEMBER 1966

SELF-FOCUSING AND SELF-TRAPPING OF INTENSE LIGHT BEAMS IN A
NONLINEAR MEDIUM

S. A, AKHMANOV, A. P. SUKHORUKOV, and R, V. KHOKHLOV

Moscow State University
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1G. A. Askar’yan, JETP 42, 1567 (1962), Soviet
Phys. JETP 15, 1088 (1962).

2v. L. Talanov, Izv. Vuzov, Radiofizika 7, 564
(1934).

*R. Y. Chiao, E. Garmire, and C. Townes, Phys.
Rev. Lett. 13, 479 (1964) (erratum, Phys. Rev.
Lett. 14, 1056 (1965)).

‘L. V. Keldysh, Report to the Session of the
Department of General and Applied Physics of the

U.S.S.R. Academy of Sciences, 1964.

-

In 1967, Khokhlov & Akhmanov received the Lenin
Prize, celebrated with a mural of them both riding a
horse upon an SHG crystal converting red to green. It
was on the wall for many years at Moscow State
University. This photo is from @jeffhecht 's article.
Where is the mural now?




Now we return to “rogue waves” in the supercontinuum

Optical extreme events appeared in the statistics of noisy supercontinuum generation

Spectrum (20 dB/div)
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LETTERS

Optical rogue waves

D. R. Solli’, C. Ropers":, P. Koonath' & B. Jalali’




An analogy is suggested by the same governing equation

Light pulse propagation in optical fibre and wave group propagation on deep water are
both described by the nonlinear Schrodinger equation (NLSE)

(a) Deep water wave group envelope
ou k, Ou

i L — —k§|u|2u=0
0z o, Ot

Soliton on Finite Background

(b) Light pulse envelope in fibre
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Zakharov & Shabat JETP 34, 62-69 (1972)




‘ Why are nonlinear Schrodinger equation-like systems so interesting?

Nonlinear optical waveguides provide a platform to study a wide range of other systems

N N\
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The validity or otherwise of some of these analogies is still an open question




What we set out to explain in 2007 ...

1. Is the study of ocean rogue waves using an analogy with optics really valid? In any
case, are optical rogue waves perhaps interesting in their own right?

2. Are ocean rogue waves generated from linear or nonlinear effects or both?

Linear Waves Nonlinear Waves
Speed and other properties do not Speed and other properties
depend on amplitude depend on amplitude

Linear > Nonlinear




First we examine rogue waves In supercontinuum generation

The NLSE describes the evolution of an ultrashort pulse envelope in space and time

co-moving time T =t — z/v, =t — b1z

A(z, T A(z,T
i% = %82 agi: ) _ v|A(2,T)|? A(2,T) Kerr nonlinearity 7 = nawo/cAcyy
instantaneous power (W) |A(z,T)?
Linear dispersion (GVD) changes temporal Nonlinear self phase modulation (SPM) broadens the
pulse shape but does not alter the spectrum spectrum but does not alter the temporal intensity
= -
= 5 ~1(t)
7, 7(z) w Ly
2 Time Time
T(z)=T)| 141221
Y 2 A(z,T) = A(0,T) exp(igy, (z,T)) 5
4=z A0 so(T) - P2




First we examine rogue waves in supercontinuum generation

The NLSE describes the evolution of an ultrashort pulse envelope in space and time

DA(2.T) By PA(2,T)
"5, T 2 o1

-7 |A(E}T) |2 A(E}T)

co-moving time T =t —z/v, =t — B2z

Kerr nonlinearity 7 = nawo/cAcyy

instantaneous power (W) |A(z,T)|?

Spectral Intensity (arb.)

Fundamental solitons

Initial condition — fundamental soliton

A(z=0,T) = /Py sech(T/Ty)
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|32
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Invariant evolution

A(z,T) = /Py sech(T/T,) expliksor2)

ksot = vPo/2 —l

soliton
wavenumber

Higher order solitons

Initial condition — high order soliton




Supercontinuum physics and soliton dynamics

With fs pulses injected in the anomalous dispersion regime the supercontinuum develops
from perturbed higher-order soliton propagation (soliton fission)

0A  « 9k A 0 e |2
A ga- s L = (Ve ) (460 [ R@OAGT - Tpar)
k>2
Linear dispersion Self-steepening SPM, FWM, Raman
Spectral Evolution Temporal Evolution

1. SPM & GVD on their own Yyield ideal periodic evolution

2. Perturbations (Raman, high-order dispersion...) induce
fission into fundamental solitons

3. Solitons generate blue-shifted dispersive waves

4. Raman soliton self-frequency shift to longer wavelengths
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sol
o
()]

Golovchenko, Dianov, Karasik, Prokhorov, Serkin., JETP Lett. 42 87-91 (1985)
Blow & Wood, IEEE J. Quant. Electron. 25 2665-2673 (1989)
Dudley, Genty, Coen, Rev. Mod. Phys. 78 1135-1184 (2006)
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Supercontinuum physics and soliton dynamics

With fs pulses injected in the anomalous dispersion regime the supercontinuum develops
from perturbed higher-order soliton propagation (soliton fission)

A o it oA 9 o0 |
o — & = Alz. t R -Tf Al T — .T! Zd.T.'
B + 2A 2 I B =1 T* (1 + IThock )T>< (2, )/ (T A(=, )| )

— 00

Linear dispersion Self-steepening SPM, FWM, Raman

Decay of optical solitons
E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin 1. SPM & GVD on their own YIeld ideal periOdiC evolution

Institute of General Physics, Academy of Sciences of the USSR

(Submitted 31 January 1985; resubmitted 18 June 1985)

Fisma Zh. Eksp. Teor. Fiz. 42, No. 2, 74-77 (25 July 1985) 2. Perturbations (Raman, high-order dispersion...) induce

fission into fundamental solitons

N : . . .
o w, 3. Solitons generate blue-shifted dispersive waves
(%
’ ,J\L 4. Raman soliton self-frequency shift to longer wavelengths
: h S

Golovchenko, Dianov, Karasik, Prokhorov, Serkin., JETP Lett. 42 87-91 (1985)
Blow & Wood, IEEE J. Quant. Electron. 25 2665-2673 (1989)
Dudley, Genty, Coen, Rev. Mod. Phys. 78 1135-1184 (2006)
< Agrawal, Nonlinear Fibre Optics 6t Ed (2019)
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More complex supercontinuum dynamics

Spectrum (20 dB/div.)

Spectral Evolution Temporal Evolution
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1. SPM & GVD on their own yield ideal periodic evolution

2. Perturbations (Raman, high-order dispersion...) induce
fission into fundamental solitons

3. Solitons generate blue-shifted dispersive waves

4. Raman soliton self-frequency shift to longer wavelengths
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‘ More complex supercontinuum dynamics

Spectral Evolution Temporal Evolution
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But supercontinuum instabilities were seen in experiments

After the 1999 results, octave-spanning supercontinuum spectra were readily generated
but why did some experiments show highly-structured, and others smooth spectra?

Ranka et al. Optics Letters 25 25 (2000) Corwin et al. Phys Rev Lett 90 113904 (2003)
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Fig. 4. Optical spectrum of the continuum generated in a
7h-cm section of microstructure fiber. The dashed curve

L duration of 22 fs FWHM and a spectral bandwidth of 45 nm
shows the spectrum of the initial 100-fs pulse.

into a 15 cm long microstructure fiber

The smooth spectra were unsuitable for frequency combs - an underlying instability?



Modelling gave the answer, reproducing the instabilities

With long pulses, soliton-driven supercontinuum generation can be highly unstable.
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‘ The source of supercontinuum noise — modulation instability

Modulation instability (Ml) is a fundamental property of nonlinear systems where
modulation on a continuous wave grows exponentially

T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967) Lake, Yuen et. al. J. Fluid Mech. 83, 49 (1977)
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Fig. 1. Top: evelution of a nonlinear wave train in the course of MI. Bottom: the corresponding evolution of wave spectrum.
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in nonlinear Schriidinger equation.

When stimulated by a coherent modulation, Ml leads to coherent solitons & breathers

When stimulated by noise, Ml leads to chaos & “rogue wave” statistics



An extensive area of earlier work in mathematical physics

N. Bogolubov

On the Theory of Superfluidity
Journal of Physics 11 23-32 (1947)

fore, E(f) receives complex wvalues. As a
consequence, by, by will involve a real expo-
nential increasing with time, whence 1t fol-
lows that the states with small N, = b}b, are
unstable.

In _order to be sure in the stability of the
excited states let us restrict the class of pos-

sible types 0! interaction forces, supposing

inequality (7) to be satisfied for all types
we shall consider. It is interesting to note

e

Bogolubov recognized the unstable branch
but seems not to have studied it further!

Y
[ R~
V. I. Bespalov and V. I. Talanov J. Lighthill G.B. Whitham
Filamentary structure of light beams Contributions to the theory of waves A general approach to linear and
in nonlinear liquids in nonlinear dispersive system nonlinear dispersive waves using
JETP Lett. 3, 307-310, (1966) J. Inst. Math. Appl. 1 269 (1965) a Lagrangian

Zakharov, Ostrovsky, Litvat, Akhmanov, Brewer, Levi-Civita, Karpman, Ham, Krasovskii, Hasegawa et al.

J. Fluid Mech. 22 273 (1965)

T. B. Benjamin, J. E. Feir

The disintegration of wave trains
on deep water. Part |. Theory

J. Fluid Mech. 27 417 (1967)



Coherent solitons and breathers

Before studying random nonlinear structures from modulation instability, we first see if we
can excite the expected mathematical breather structures from a coherent modulation

. o We create frequency-domain initial conditions based on the
W + §'¢"7-"T'r + Y[ =0 analytic mathematical form for a particular soliton structure

Coupler
ECL1 ((.))
HMNLF
ECLZ Phase modulator 900 m

0sA g

s "

FROG x

Autocorrelator i)

Figure 3 | Experimental set-up. ECL: external-cavity laser; OSA: optical
spectrum analyser; FROG: frequency-resolved optical gating. HNLF: highly
nonlinear fibre. EDFA: erbium-doped fibre amplifier.




Solitons and breathers in modulation instability

With coherent initial modulation, modulation instability evolves towards stable breather
or soliton structures. This has been confirmed in experiments.

(a) Experiment

Akhmediev breather (AB)

Hammanietal.,
OL (2011)

Collision

10
(a) © Ewp
5 —GNLSE

g =50 0 50

10

Intensity (W)

Peregrine soliton Kuznetsov-Ma soliton Higher-order AB
Kibler et al., Kibler et al., Frisquet et al.,
Nat. Phys. (2010) Sci. Rep. (2012) PRX (2013)



Transferring results into hydrodynamics

The generation of coherent structures from induced modulation instability has also been
performed in hydrodynamic wave tanks, confirming the NLSE analogy between the systems

week ending
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Measuring spectral instabilities in real-time

What was significant about the 2007 measurements in supercontinuum generation was
the ability to measure the spectral instabilities in real time

a Real-time measurement of
Monlinear medium pulse trains
n i
ana | )
Pulse ' J_ namre Vol 45013 December 2007 |doi10.1038/nature06402
train ﬂn+ ﬂﬁn H Fil .|_....L... -'Jl.J_l..J...l.. ..i.Il.l.J.._ j.l.lll_.l..
ilter" :
Moise MWM'W :

LETTERS

Optical rogue waves

D. R. Solli’, C. Rupers."z, P. Koonath' & B. Jalali'

Time series
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Measuring spectral instabilities In real-time

Dispersive Fourier Transform

Analogous to spatial far-field diffraction

X X

__________________________________________________________________________

(measures spectral intensity, sub-nm resolution) | ) |

. . . . i e————— far-field diffraction |
Principle: The temporal intensity of a pulse stretched by ) R (Fourier transform)
large linear dispersion is proportional to its spectral intensity | m: s |

:_ ________________________________________________________________________ : : * o - - :
| Input | l -
e 1 Recorded on Oscnloscope : i Z > kﬂxz :
: | / T Uo(t) ! U.(t) . ()2 ! ! :
1 | 1 ! 1
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' Goda & Jalali. Nature Photonics 7, 102-112 (2013) Pasz : : :

Shot-to-shot spectra are stretched to 5-10 nanoseconds and measured using a fast oscilloscope



This was in fact a much earlier idea — the “spectron”

Self-action of wave packets in a nonlinear medium and femtosecond laser pulse
generation

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin

M. V. Lomonosov Moscow State University

Usp. Fiz. Nauk 149, 449-509 (July 1986)

1.4.1. “Spectron’’; puise shape in the far-zone 232 OPTICS LETTERS / Vol. 8, No.4 / April 1983

Let us analyze the propagation of PM pulses in a disper-
sive medium for arbitrary initial shape of the profile p, (7). Real-time Fourier transformation in dispersive optical fibers

At the output of a frequency-modulating device a pulse
has the form Tomasz Jannson

. Research Division, National Technical Systems, Inc., Los Angeles, California, 90066
Ay (t) = p, (t) e=txat?/2, (1.37)
Received November 22, 1982

EVOlution Of this pulsc in a disperSi A\~ medlum m t.he Second- The general concept of temporal Fourier transformation in dispersive media is analyzed. The real-time optical

Fourier transformer is shown to be realizable by using dispersive single-mode fibers and chirping lasers.

order approximation of dispersion theory is described by
the expression (1.12). In this case, at a distance z=F
= (apk,) ~ "' we obtain

= (i =127 i“oﬂ'fa, .
A (1, 2) = (i 2nky2) 0o (30%oT) € (1.38) **Yu. E. D'yakov and S. Yu. Nikitin, Zadachi po statisticheskoi radiofi-
~ e ‘ zike i optike, Moscow State University Press, M., 1985 (Problems on
Po (@eTqn) = S Po (?.,“) e-iaaide. (1.39) statistical radiophysics and optics).

From the obtained result it is possible to draw the following
conclusions about the pulse in the *‘focal” plane of the
“time” lens. The pulse shape is exactly the same as the Four-
ier-spectrum of the initial pulse.***° Such pulses are called
“spectrons.’’??*” The profile of pulses turns out to be sym-




Measuring spectral instabilities in real-time

When applied to supercontinuum generation we can directly measure noise-induced shot-
to-shot fluctuations in spectral structure, and the associated statistics

Godin et al. Opt. Exp. 21 18452 (2013) Wetzel et al. Sci. Rep. 2 882 (2012)
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What makes an optical rogue wave different?

To understand the physics of optical rogue waves in the supercontinuum, we use
simulations to see the effect of random noise on the input pulse

A small number of simulations yield

Most simulations yield dynamics like this
dynamics like this (RS = rogue soliton)
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What makes an optical rogue wave different?

Random noise can lead to very different dynamics, and in a small number of cases, the
emergence of extreme rogue solitons that undergo dramatic shifts to longer wavelengths

A small number of simulations yield
dynamics like this (RS = rogue soliton)

The physics

Random noise
Chaotic modulation instability
Chaotic soliton dynamics

3

10 Inelastic (Raman) energy transfer
&

@ .

a One soliton can become

larger than the others

0
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The next step: looking at incoherent modulation instability

Can we measure noise-seeded random modulation instability dynamics in more detail?

Numerical

Simulation l_al,y+l oy "

In particular

Can we also measure statistics of the
temporal fluctuations?

Can we measure the intensity
profiles of the chaotic temporal
peaks and compare with analytic
soliton / breather structures?




Measuring temporal instabilities in real-time

Time lens magnifier

(temporal intensity, sub-ps resolution)

Analogous to temporal imaging
Principle: A signal experiencing dispersion before and after

guadratic temporal phase is temporally magnified Dispersion & quadratic phase yield a time-

domain analogue of a thin lens imaging system

Dispersive ~ Dispersive
fiber  Quadratic fiber

Signal | temporal phase <‘
=
U, ()P I u

Waveform Magnification Using Time Lens
. -~~~ Spectral

Image Magnification Using Lens

detector & oscillosco
v Filter Pe
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wavelength

Linearly chirped pump

R. Salem et al., Adv. Opt Photonics 5, 274-317 (2013)

Picosecond structures are stretched to the nanosecond scale and measured using a fast oscilloscope



‘ Time-lens measurements of modulation instability

CATIONS | 713675 | DOI: 10.1038/ncomms13675 | www.nature.com/naturecommunications

Direct measurement of instability time series and histogram
Real-time measurements of spontaneous breathers

and rogue wave events in optical fibre modulation Comparison with stochastic NLSE simulations
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What if you do not have a time lens?

Even when time lens measurements are not possible, a neural network algorithm can be trained to
determine key temporal characteristics based only on measurements of spectral intensity (i.e. no
spectral phase information).

A
Modulation Instablllty /WMQW\ M) M
PHEEe Wavelength Wavelength Wavelength B e B
Laser Oy 62;0 (1) © E ()
=15 |'//| , «— P, max N ,

oF 207 S, (@) = |E, (o)

TR

Time

TIme Time Time

Can we configure a neural network to map complex shot to shot spectra to the peak intensity of the
corresponding modulated temporal intensity profile (rogue waves)? Can S, (A) predict P, max ?



Single-shot spectra

Experimental setup

Modelling suggests that this requires a very high dynamic range real-time spectrometer, so experiments
are performed using a reduced repetition rate laser and scanning bulk monochromator

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-07355-y

Machine learning analysis of extreme events in
optical fibre modulation instability
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Training a neural network to analyse modulation instability

We use a standard neural network architecture and use simulations to train a network to correlate the
full Ml spectrum with the corresponding peak of the associated temporal intensity profile.

Wavelength

Spectrum

Xn = [Xl,xz..._X‘N]

Hidden
layer 2

Output
layer

Intensity

Architecture
Feedforward

2 hidden layers (30, 10 nodes)

Training using NLSE simulations
(X, Yn) , n=1....30,000

X, =[xy, x0..xnv] , N=121

300 epochs of 30,000 simulations



Testing the trained neural network

We use a standard neural network architecture and use simulations to train a network to correlate the
full Ml spectrum with the corresponding peak of the associated temporal intensity profile.

Testing the trained network

g
o

Use 20,000 simulations not in the
training set.

For each spectrum we predict the peak
intensity.

Machine learning
maximum intensity (kW)
()]

We plot the predicted intensity against
the known ground truth intensity from
the corresponding simulation.

1.0

0.5 1.0 1.5 2.0 We obtain very high correlation.
Simulations maximum intensity (kW)



Analysing experimental spectra to predict time-domain peaks

Based on 3000 measured real-time spectra, we determine the corresponding temporal peaks and

compute the associated temporal probability density function.
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We compare the machine learning predictions with fully realistic simulations of our experiments.



Can we do the same in supercontinuum generation?

In other words, based on spectral data only, can we determine the properties of the most red-shifted
solitons (“rogue solitons”) in a temporal supercontinuum field?

SCIENTIFICREPORTS|  (2020) 10:9596 | https://doi.org/10.1038/s41598-020-66308-y
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Machine learning and rogue solitons

We train a neural network to correlate the full supercontinuum spectrum with the peak intensity of the

the red-shifted “r ” soliton
e red-shifted “rogue” solito The Approach
1. Train using 20000 simulations
input hidden hidden output 2. Test using 10000 independent simulations
layer layer 1 layer 2 layer
3. Compare predicted peak intensity with
e Q simulation “ground truth”

o o --- p=0.905
o ol
J

wavelength
time

spectrum intensity

Pp Sims (kW)

Conclusion: a neural network can use only supercontinuum spectral data to infer maximum
temporal peak power of red-shifted Raman solitons



‘ Model free modelling of nonlinear fibre propagation

Numerical integration of generalized nonlinear propagation equations can be time-consuming. Can we
train a neural network to model nonlinear propagation directly?

Optics in
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From waveguides to lasers ...

Instabilities have been observed since the first development of lasers in the 1960s but we
can now use ultrafast real-time characterization tools to uncover new details
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Antome F. J, Runce,” New G. R, Broognick, aso Mino EnmTaLo

|
photonics

—= Pt
nanire
COMMUMICATIONS

Physics and applications of laser diode chaos

ML Sommanna’ asd K, A, Shoee’

Stochasticity, periodicity and localized light
structures in partially mode-locked fibre lasers

Taraser™, 5 Khores™®, SV Smimar’. SM. Nabtsee® & 500 Tartyyn'®

S
T e

DV Chstn =, 5. Sugmeanam’. 1

2015 ) f@hwmmf-wWﬁWW

e .
photonics

Q-switched-like soliton bunches and noise-like

Resolving the build-up of femtosecond P —— — . . pulses generation in a partially mode-locked

mode-locking with single-shot spectroscopy at Successive soliton explosions in an fiber laser

90 MHz frame rate ultrafast fiber laser Ihenhang Wang, £ Wang. Yaa-ge Lin, Wenjing 7ha. 130 Zhang.
‘Shangrhang Wasg, Guang Vang, and Ruijing He

G. Herink's*, B 1alalF, C. Bopers” and D, R. Sol®? Marna Lar,' Ae-Pusa Luo,'* Yi-Rlosa :ﬁ Sawa Hu," Yi-Cran Li,' Hu Cu!

Zia-Caao L, ano Wen-Crena X

-
AR NN R

Science PRI

Seience 356 (6333), 50-54
Real-1 PRL 118, 243901 (2017} PHYSICAL REVIEW LETTERS
Real-time s?e‘i‘-"al lnterfer?melr]! ki Real-Time Observation of Internal Motion within Ultrafast Dissipative
probes the internal dynamics Optical Soliton Molecules

Katarzyna Krupa.,' K. Nithyanandan, Ugo Andral, Patrice Tebofo-Dinda, and Philippe Grela

£
1 i -
i i o $
AT Ty T 1M 18 LW 1Y 18 T TR YT
T e

of femtosecond soliton molecules

2018-2020
> 150 papers




Understanding instabilities in lasers

In addition to new measurement techniques, we now have the general framework of the
dissipative soliton to describe lasers where nonlinear dynamics coexist with gain & loss

nature .. )
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Spectral Instabilities in a Soliton-Similariton Laser

The soliton similariton laser is a novel fibre oscillator where two conceptually different
nonlinear structures co-exist within a highly dissipative fibre laser cavity
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Spectral Instabilities in a Soliton-Similariton Laser

A similariton or self-similar amplifier is one where all input pulses evolve asymptotically to

the same output pulse (a nonlinear attractor)

nature physics | VOL 3 | SEPTEMBER 2007
Self-similarity in ultrafast nonlinear optics

JOHN M. DUDLEY"™, CHRISTOPHE FINOT?3,

DAVID J. RICHARDSON? AND GUY MILLOT®
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Can similariton evolution make fibre lasers more robust against nonlinear instability?




‘ Characterizing more extreme intracavity laser dynamics

Experiments using real-time dispersive Fourier transform measurements reveal
comparable rich dynamics as suggested by the modelling
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What actually happens when you turn on a fibre laser?

The build-up of stable mode-locking in a fiber laser typically shows complex dynamics

Slow detection over long time window
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Measuring instabilities in lasers

Simultaneous time lens & dispersive Fourier transform provides complete real time
characterization of soliton buildup from noise in a SESAM-modelocked soliton fibre laser

nature
photomc S https://doi.org/10.1038/541566-018-0106-7

Real-time full-field characterization of transient
dissipative soliton dynamics in a mode-locked
laser
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‘ Build up of solitons from noise
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Build up of solitons from noise

We see complex dynamics and multiple pulses, with phases of growth and collapse
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New results from a broadband noise-like pulse laser

Time lens measurements in a 1000 nm broadband noise-like pulse laser reveal soliton
instability properties and statistics in excellent quantitative agreement with modelling

NATURE COMMUNICATIONS | (2021012:5567 | https://doi.org/10.1038/541467-021-25861-4
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Conclusions

1. Optical rogue waves can emerge out of fibre nonlinear dynamics due to the noise
sensitivity of modulation instability and soliton propagation

2. But other experiments & modelling in both optics and hydrodynamics suggest that
nonlinearity is not the only way in which extreme wave events can occur
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Conclusions

3. Real-time measurement techniques provide new windows into studying instabilities in
both fibre propagation and in ultrafast lasers

4. Techniques such as the dispersive Fourier transform and the time lens are now
becoming necessary elements in experimental setups

5. Machine learning is an extremely promising addition to both experiment and analysis in
nonlinear fibre optics, and maybe the future of ultrafast laser development
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