WE ARE 心N

Unveiling the Living Eye with Multiphoton Techniques

Christina Schwarz, University of Tübingen Juan M. Bueno, Universidad de Murcia

Technical Group executive committee (until December 2020!):

E. Josua Fernandez, University of Murcia, Spain (Chair), enriquej@um.es

Karen Hampson, University of Oxford, UK (Vice Chair)

Juan Tabernero, Anglia Ruskin University, UK/ University of Murcia, Spain (Vice Chair)

Contact your Technical Group and Get Involved!

- Linked-In site (global reach)
- Announce new activities
- Promote interactions
- Complement the OSA Technical
 Group Member List

E. Josua Fernandez enriquej@um.es

karen.hampson@eng.ox.ac.uk

Applications of Visual Science Technical Group

MEET THE NEW COMMITTEE (starting Janurary 2021):

Chair

Karen Hampson

University of Oxford

Vice-Chair

Laura Young

University of Newcastle

Officer for Media and Webinars

Maria Viňas

Harvard Medical School

karen.hampson@eng.ox.ac.uk

Applications of Visual Science Technical Group

Unveiling the Living Eye with Multiphoton Techniques

Second Harmonic Generation Microscopy of the Cornea, Prof. Juan M. Bueno

Multiphoton Imaging of the Living Retina, Dr. Christina Schwarz

Multiphoton Imaging of the Living Retina

Christina Schwarz

Institute for Ophthalmic Research University of Tübingen, Germany Center for Visual Science University of Rochester, NY, USA

OSA Webinar: Unveiling the living eye with multiphoton techniques November 4, 2020

ODVANCED **F**ETINAL **I**MAGING **O**LLIANCE

Imaging mettimal-structultidayered for can set feer tartise una ode

primate retina (*ex vivo*) Courtesy Steve Massey

Imaging retinal structure with offset-aperture detection

primate retina (*ex vivo*) Courtesy Steve Massey

Cone inner segments Scoles et al, IOVS 2014

Imaging dynamic features with time-lapse offset-aperture imaging

Blood cells within capillaries

Guevara-Torres et al, BOEx 2016

Immune response after ocular injection of lipopolysaccharide

Joseph, Chu et al, eLife 2020

Possibilities for functional imaging of the retina

primate retina (*ex vivo*) Courtesy Steve Massey

Photopigment densitometry Sabesan et al, PlosOne 2015

Optical coherence tomography Hillmann et al, PNAS 2016

Two-photon imaging provides better resolution and weaker stimulation of photoreceptors

Sharma et al, BOEx 2013

Functional calcium imaging allows tracking of RGC responses to light stimulation

Bar-Noam et al, LSA 2016

Qin et al, LSA 2020

GCaMP6s-labeled RGCs

Simultaneous functional calcium imaging of many RGCs at a time

Imaging endogenous fluorophores in the living eye indicative of cellular function

Endogenous fluorophores in the retina

Retinol and the visual cycle

outer segment

Retinol and the visual cycle

RPE

outer segment

Retinol and the visual cycle

outer segment

Travis et al, Annu Rev Pharmacol Toxicol 2007 Available methods to track the visual cycle

- Electroretinography (ERG)
 - Voltage change
 - Signal from all retinal layers and cell classes is intertwined
- Pigment densitometry
 - Change in pigment density
 - Afflicted with artifacts due to neural responses and vascular changes
- Psychophysics
 - requires patient feedback

To accelerate diagnosis of disease and treatment development, there is a need for objective methods to quantify visual cycle kinetics on the single-cell level!

In vivo two-photon ophthalmoscopy can assess visual cycle function

outer segment

Endogenous retinal fluorophores are excitable in the UV band...

...but the water window blocks this range

Two-photon ophthalmoscopy can excite these fluorophores in the living eye

Reflectance and fluorescence images of photoreceptors provide complementary information

reflectance

two-photon excited fluorescence (TPEF)

R

Does the fluorophore at the photoreceptor layer show a dark adaptation-like behavior?

Hecht et al., J Gen Physiol 1937

Fluorescence decrease is different from photopigment regeneration

Fluorescence decrease ~4x faster than photopigment regeneration

→ Fluorophore is intermediate product of the visual cycle

Fluorescence decrease 4-5x faster in cones than in rods

AOFLIO reveals longer fluorescence lifetime in cones than in rods

Walters, Feeks et al, in preparation

Subsets of photoreceptors are distinguishable

Slide courtesy Khang Huynh

Clustering of cones is repeatable

Slide courtesy Khang Huynh

Model 1 – AAV induced outer segment degeneration

Walters et al, BOEx 2018

Impairment of the retinoid cycle

Walters et al, BOEx 2018

Model 2 – Short periods of systemic hypoxia

Systemic hypoxia alters the time course of TPEF

Systemic hypoxia alters the time course of TPEF

Time constant of TPEF increases during hypoxia Fractional TPEF increase is unaffected

Functional two-photon imaging is possible within current safety standards

Schwarz et al, BOEx 2016

Photoreceptors and RPE appeared normal

after 1st exposure

after 3rd exposure to 81.7 J/cm²

Photoreceptor reflectance

RPE autofluorescence

Schwarz et al, BOEx 2016

Only IR autofluorescence is affected

Schwarz et al, BOEx 2016

IRAF reduction with CW exposures (790 nm)

Macaque

Human

 110 J/cm^2

~190 J/cm²

- Occurs for exposures below ANSI MPE
- Photochemical effect

Masella et al, IOVS 2014

IRAF reduction had no measurable functional consequences

Direct ophthalmoscopy, Goldmann visual fields, multifocal ERG, photopic microperimetry (MAIA) within normal range

IRAF showed slow but full recovery

Masella et al, IOVS 2014

Summary

- Two-photon imaging of exogenous fluorophores (e.g. GCaMP) allows to study cell function in response to visual stimulation as realistically as possible in the living eye.
- Two-photon ophthalmoscopy of endogenous fluorophors can assess photoreceptor function. The technique is sensitive to differences in cell physiology and to interventions expected to alter visual cycle kinetics.
- Functional two-photon ophthalmoscopy is possible at safe light levels. Still, the cause and consequence of IRAF reduction requires further research.

Thank you!

Acknowledgements

<u>University of Tübingen</u> Zhijian Zhao

University of Rochester

Robin Sharma Sarah Walters Matthew Keller Qiang Yang Amber Walker Lee Anne Schery Bill Fischer Jennifer Strazzeri Mina Chung Bill Merigan Jennifer Hunter David Williams Khang Huynh Soon Keen Cheong Keith Parkins Jie Zhang

Financial support

ERC Starting Grant 2019 grant agreement No 852220

Horizon 2020 grant agreement No 863203

Excellence Initiative - University of Tübingen

<u>Case Western</u> Grazyna Palczewska **Krzyztof Palczewski**

ODVANCED **F**ETINAL **I**MAGING **O**LLIANCE