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Spatiotemporal Dynamics…

¨ Introduction to nonlinear wave propagation

¨ Beam self-cleaning
Optical thermodynamics
Measurement of 3D electric fields

¨ Multimode solitons
¨ Instabilities
¨ Spatiotemporal mode-locking

¨ Current / future directions

§ Emphasis on physics and science
§ Many questions remain
§ References will be provided



Introduction to Nonlinear Wave Propagation



Short pulses: dispersion

n = n(w)
v(w) = c/n(w)



Nonlinear propagation (c(3))
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self-phase modulation produces new frequencies

Kerr nonlinearity from bound electrons

n2 ~ Re c(3)       n = n0 + n2I



Nonlinear propagation (c(3))
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cross-phase modulation 
§ produces new frequencies
§ couples waves

I2



Nonlinear propagation (c(3))

4-wave mixing
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§ allows modes to exchange energy



Dispersion and nonlinearity

• Wave usually decays



Soliton formation

(anomalous) dispersion cancels nonlinearity for 
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Soliton formation
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Soliton formation

• Soliton is a nonlinear attractor 



§ Localized wave packets that are stable

§ Eigenmodes in linear systems  ó solitons in nonlinear systems

In 1D soliton dynamics help us understand
§ modulation instability
§ modelocked lasers
§ continuum generation
§ breathers, Peregrine soliton
§ rogue waves
§ …

2D and 3D: solitons are unstable

What will happen in multimode fiber ??

Why are solitons so important? 



Modulation instability (temporal)

§ Anomalous dispersion: a continuous wave breaks into temporal components



Modulation instability (temporal)

§ Anomalous dispersion: a continuous wave breaks into temporal components

𝐴-𝜏! ~ constant



Multimode waveguides: between 1D and 3D

https://commons.wikimedia.org/wiki/File:Optical_fiber_types.svg



Why study propagation in multimode fiber now?

§ Little work on nonlinear multimode pulse propagation before 2013 



Why study propagation in multimode fiber now?

§ Little work on nonlinear multimode pulse propagation before 2013 

§ Problem has
Dispersion
Linear and nonlinear mode coupling
Disorder
Dissipation 

With M modes there are M dispersion curves
M2 cross-phase modulation terms
M4 4-wave mixing interactions



Why study propagation in multimode fiber now?

§ Recent theoretical, computational, experimental advances
e.g., transfer matrix, principal modes, mode-resolved measurements,…

Carpenter et al.



Why study propagation in multimode fiber now?

§ Recent theoretical, computational, experimental advances
e.g., transfer matrix, principal modes, mode-resolved measurements,…

§ Relevance to imaging / complex media

Ploschner et al., Nature Photon 2015



Why study propagation in multimode fiber now?

§ Recent work on
Intermodal nonlinear processes 

Nazemosadat J Opt Soc Am B 2016

Propagation in higher-order modes of multimode fiber

Rishøj et al., Optica 2019



Why study propagation in multimode fiber now?

§ Space division multiplexing in telecom

Agrell et al., J Opt 2016

§ Laser / amplifier / transmission applications



Impact of GRIN fiber

§ Nonlinear optics always requires wave vector (phase) matching

§ Short-pulse NLO requires matching of group velocities

§ GRIN fiber has very small modal dispersion compared to step-index fibers

Ultrashort pulses in different modes interact strongly

Result is quasi-3D pulse propagation



Graded-index (GRIN) multimode fiber



LP01 LP02 LP03 LP04 LP05

LP11a

LP11b

LP21a

LP21b

LP12a

LP12b

Modes of GRIN fiber

+ many more



Modes of GRIN fiber

§ Propagation constants equally-spaced

𝛽 ∝ 𝑛.//

𝑛(𝑟)

𝑟𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑐𝑜𝑟𝑒



Multimode fibers

GRIN fiber 
§ modes have similar velocities
§ allows stronger nonlinear interactions among modes
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Beam Self-Cleaning

(spatial organization)



Beam self-cleaning in GRIN fiber

?

~1 ns
5 µJ

1064 nm

multimode fiber
supports ~100 modes

12 m
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Beam self-cleaning in GRIN fiber

Krupa et al., Nature Photon 2017

~1 ns
5 µJ

1064 nm

multimode fiber
supports ~100 modes

12 m



Beam self-cleaning

§ P << Pcr

§ negligible dissipation

Krupa et al., Nature Photon 2017



Beam self-cleaning 

Liu et al., Opt Lett 2016

§ Femtosecond pulses



Beam self-cleaning: theory

§ Kerr nonlinearity underlies self-cleaning 
§ Why does it occur?
§ Role of disorder?

nanosecond pulses                             femtosecond pulses
Krupa et al., Nature Photon 2017 Liu et al., Opt Lett 2016



GRIN fiber
50 µm core

28 m

Application: high-power continuum

§ Speckle-free output with M2  ~  2
§ 80 µJ pulse energy
§ Compact, bright, multi-octave continuum

Lopez-Galmiche et al., Opt Lett 2016

400 ps
100 µJ

1064 nm
microchip laser



How to understand beam-cleaning?



Nonlinear mode coupling
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Nonlinear mode coupling

Δ𝛽 = 𝛽" + 𝛽$ − 𝛽% − 𝛽!



Nonlinear mode coupling

§ 4WM phase-matched in GRIN fiber
§ Power can transfer to lower and higher modes
§ Transfer nonreciprocal owing to nonlinear phase



Optical thermodynamics

With M modes there are M dispersion curves
M2 cross-phase modulation terms
M4 4-wave mixing interactions



Optical thermodynamics

With M modes there are M dispersion curves
M2 cross-phase modulation terms
M4 4-wave mixing interactions

Picozzi et al., “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic 
formulation of statistical nonlinear optics,” Phys. Rep. 542, 1 (2014)



Optical thermodynamics

𝑐( 0 mode occupancies

𝑐( 0

β(

β( propagation constant

M     total number of modes



Optical thermodynamics: finite # of modes

Wu and Christodoulides, Nature Photonics 13, 776 (2019)

Power P = % c1 0

Hamiltonian H = %β1 c1 0

Internal energy U = −H

Entropy S = % ln c1 0

entropy maximization

𝑐( 0 = −
𝑇

β( + µ

𝑈 − µ𝑃 = 𝑀𝑇

equilibrium state 
Rayleigh–Jeans distribution

𝑇 and µ
optical thermodynamic parameters

(𝑇 has nothing to do with ordinary temperature)

Mmodes



Optical thermodynamics

Wu and Christodoulides
Nature Photonics 13, 776 (2019)

β(

𝑇 > 0

𝑐( 0

§ Nonlinearity mediates thermalization

§ 4WM phase-matched in GRIN fiber
§ Measurement of distribution requires measurement of 𝐸



3D field measurement

§ Spatial phase from fringes
§ Spectral phase from FROG

(Pariente et al., Nature Photon 2016)
§ Field decomposed into eigenmode basis



Thermalization experiment

20 nJ
200 fs

1050 nm

multimode fiber
supports ~100 modes

50 cm

mode-resolved 
measurement



§ Direct observation of Rayleigh-Jeans distribution

§ Optical entropy is maximized in Kerr beam-cleaning

Pourbeyram et al., arXiv

Thermalization



Optical thermodynamics

Other processes

§ Carnot cycles
§ Optical cooling
§ Isentropic processes
§ …
§ …

Future: design of high-performance light sources

Wu and Christodoulides, Nature Photonics 13, 776 (2019)



Multimode solitons
(spatiotemporal organization)



Tme domain: linear propagation



Multimode soliton formation



Baby steps: 3 modes

62.5/125 µm GRIN fiber
supports ~100 modes

SMF28
50 cm

§ Excite 3 lowest modes

10 µm MFD



Experiment

300 fs
1550 nm
0.1 - 5 nJ

62.5/125 µm GRIN fiber
100 m

SMF28
50 cm

Ldisp ~ 1 m



Experimental results

§ For E < 0.1 nJ pulse disperses

§ 0.5 nJ pulse energy

input
output

input                              output



3 modes: theory

• Launch 0.5 nJ / 300 fs



Intuitive picture

Linear propagation



Intuitive picture

§ Solitons with up to 10 modes generated
§ Solitons with more modes require greater nonlinear phase / energy

Renninger et al., Nature Commun 2013
Wright et al., Opt Exp 2015

Multimode soliton



Higher energy: multimode soliton fission 



Raman solitons in few-mode fiber



Raman solitons in few-mode fiber



Raman solitons in few-mode fiber

Zhu et al., Opt Lett 2016



Raman solitons in few-mode fiber

§ More modes: Zitelli et al.,  Opt Express 28, 20473–20488 (2020)



Questions

§ Does XPM play a role after soliton formation?

§ What is the final state? Single-mode (Raman) soliton?

Zitelli et al. Photonics Research 2021

§ Can “light bullets” form in multimode fiber?

z = 1 km ~ 5600 LD



Instabilities
(spatiotemporal organization)



Coupling of waves in GRIN fiber

§ 4WM can transfer energy between waves

2𝑘!2$! = 𝑘3(4%5" + 𝑘(6".7



Coupling of waves in GRIN fiber

§ 4WM can transfer energy between waves

2𝑘!2$! = 𝑘3(4%5" + 𝑘(6".7 + 08$
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MI in GRIN fiber

§ Nanosecond input pulses

§ “Geometric parametric instability”
§ 300 THz frequency range

Krupa et al., Phys Rev Lett 2016



Coupling of waves in GRIN fiber

§ Perturbed solitons can emit dispersive waves

𝑘3:" = 𝑘6(3



Coupling of waves in GRIN fiber

§ Perturbed solitons can emit dispersive waves

𝑘3:" = 𝑘6(3 + 08$
9$

Zp



Experiments

?

500 fs
energy up to 1 µJ

peak power up to MW
1550 nm

multimode fiber
supports ~100 modes

1 m



Experiments

?

Adjust position to excite 
different mode combinations 



Controllable continuum



Controllable continuum



Controllable continuum



Controllable continuum



Controllable continuum



Perturbation of solitons (1D tutorial)

§ Perturbed soliton adjusts to reach                            

and radiates dispersive wave

§ Periodic perturbation (period = Zp)
Resonant energy transfer when wave vectors match

Gordon, J Opt Soc Am B 1992
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Perturbation of solitons (1D tutorial)

§ Perturbed soliton adjusts to reach                            

and radiates dispersive wave

§ Periodic perturbation (period = Zp)
Resonant energy transfer when wave vectors match

Kelly, Electron Lett 1992
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Spatiotemporal profile in GRIN fiber



Theory and experiment

§ Simulation, experiment and analytic theory agree well
§ Self-imaging perturbs the field
§ 300 THz frequency range

Wright, Wabnitz et al., PRL 2015



Spatiotemporal Mode-Locking in Fiber Lasers



Ultrafast science

www.physics.ubc.ca/~djjones

Femtochemistry Frequency Combs

Zewail, J. Chem. Ed. 78, 739 (2001)



Mode-locking

Image credit: University of Oregon Physics



Transverse modes



Can we lock transverse and longitudinal modes?



Resonant lasing frequencies

Without dispersion, longitudinal modes 
form a frequency comb 



Resonant lasing frequencies

Chromatic dispersion shifts resonances



Resonant lasing frequencies

Chromatic dispersion shifts resonances

Each mode family has different resonances



What do we need for 3D mode-locking?

§ Low spatiotemporal dispersion

§ Phase-sensitive nonlinear interactions between 3D modes

§ A spatiotemporal saturable absorber



Our approach

§ Parabolic-index fiber makes dispersions comparable
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Our approach

§ Parabolic-index fiber makes dispersions comparable

§ Temporal profile
Normal group-velocity dispersion
Strong spectral filtering 

t t



Our approach

§ Spatial profile
Strong spatial filtering promotes multiple transverse modes

LP01

LP01 LP02

+ -

LP03



How to do it?

multimode graded-
index gain fiber



How to do it?

Multimode 
graded-index 

gain fiber100 modes

spectral and spatial filters



Example simulation



Experiments

§ 100 spatial modes x 2 polarizations
§ Nonlinear polarization rotation for 

saturable absorber



Mode-locked laser



Pump power

Mode-locked laser

~100 modes

10 modes

CW

CW



Pump power

bistable

Mode-locked laser

CW

CW CW STML



Pump power

Mode-locked laser

CW

CW CW STML

STMLSTML

STML

4 positions 
on beam



Pump power

Mode-locked laser

CW

CW CW STML

STMLSTML

STML

150 fs



3D characterization



Mode-locking transition



Why is it important? 



Why is it important? 

§ There are many new mode-locked states

§ States and phenomena that have no analogs in 1D
involve up to 108 modes

§ Theoretical understanding is crude



Why is it important?  

§ There are many new mode-locked states

§ States and phenomena that have no analogs in 1D
involve up to 108 modes

§ Theoretical understanding is crude

Space-time mode-locking may offer routes to

§ 3D shaped ultrafast pulses, pulse sequences

§ Higher peak power and intensity than existing lasers

Wright et al., Science 358, 94 (2017)



Frequently-asked question:

What’s M2 ?



Can we exploit Kerr beam cleaning?

Tegin et al., Advanced Photonics 2, 056005 (2020)



High-energy solutions

§ Find (multimode) states with ~gaussian-beam outputs

§ Possible formation of nonlinear mode 



Theory of spatiotemporal mode-locking
(if time permits)



Modeling: a simple view of an oscillator

!𝐶 ≈ $𝐹 & '𝑆𝐴 & $𝑃



Modeling: a simple view of an oscillator

!𝐶𝐸! 𝑥, 𝑦, 𝑡 → 𝐸!"# 𝑥, 𝑦, 𝑡



Modeling: a simple view of an oscillator

!𝐶𝐸! 𝑥, 𝑦, 𝑡 → 𝐸!"# 𝑥, 𝑦, 𝑡

What emerges asymptotically? Why?



Identification of critical effects: attractors

§ Attractor for spatial filter

§ Attractor for saturable absorber 

§ Attractor for gain extraction

LP01 LP02

+ -

LP03

LP01

LP11a LP11b

+

LP02

+



Comparing to experiments

increasing
spatial 

filter size

Wright et al., Nature Phys. 16, 565 (2020)



Example of intuition

Saturable absorber favors high intensity => few modes

Gain extraction favors many modes

spatial filter 
small                                                          large

few radial LP0N modes                          diverse higher-order modes 



End of summary of theory



What about…

§ anomalous dispersion – multimode soliton laser

§ step-index fiber  

§ multi-core fiber

§ solid-state gain media

§ Raman or parametric gain

§ synchronous pumping to select modes

§ …



Interesting directions for MM NLO



The role of disorder in MM nonlinear optics

§ Disorder can enhance multimode nonlinear optical effects
§ Much interest for telecom

MM solitons                                                          Manakov system

increasing disorder
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The role of disorder in MM nonlinear optics

§ Disorder can enhance multimode nonlinear optical effects
§ Much interest for telecom

MM solitons                                                             Manakov system

increasing disorder

Mecozzi et al., Opt. Express 2012



The role of disorder in MM nonlinear optics

§ Disorder can enhance multimode nonlinear optical effects
§ Much interest for telecom

MM solitons                                                             Manakov system

increasing disorder

?



Wave-front shaping

§ Control of continuum

Tzeng et al., Nature Photon 2018

§ Control of multimode lasing

Wei et al., Light Sci Appl 2020



MM propagation in hollow-core fibers

§ Isolated examples since 2000

§ Multidimensional solitary states

Safaei, Fan et al., Nature Photon 2020 



Resources

§ Massively-parallel code for solving GMMNLSE (with GPU)

https://wise.research.engineering.cornell.edu/ or
https://github.com/wiselabaep/gmmnlse-solver-final

Wright et al., “Multimode Nonlinear Fiber Optics: Massively Parallel 
Numerical Solver, Tutorial and Outlook,” IEEE J. Select Topics 
Quantum Electron. 24, 5100516 (2018)  

§ Nonlinear Fiber Optics 6th Ed. (2019) by G. Agrawal, Ch 14







Reserve slides
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Space domain: linear wave propagation

• beam spreads owing to diffraction



n = n0 + n2I 

Nonlinear propagation (c(3))

nonlinear phase shift produces self-focusing
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Nonlinear propagation (c(3))

nonlinear phase shift produces self-focusing
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n = n0 + n2I 

Nonlinear propagation (c(3))

nonlinear phase shift produces self-focusing

n

r



Critical power

diffractionn(I)=n0 + n2 In(I)= n0+n2I diffraction  

§ diffraction balances self-focusing for 
P = Pcr ~ 5 MW in glass
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Critical power

§ diffraction balances self-focusing for 
P = Pcr ~ 5 MW in glass

§ Spatial soliton 



Critical power

§ diffraction balances self-focusing for 
P = Pcr ~ 5 MW in glass

§ 2D: balance is unstable in cubic nonlinear media



Modulation instability (spatial) 

§ A beam breaks into its component (spatial) solitons



Spatiotemporal solitons

phase modulation balances dispersion 
and

self-focusing balances diffraction

§ “light bullet” (Silberberg 1990)

§ unstable (c(3))



Coupled mode analysis

“GMMNLSE”
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F. Poletti and P. Horak, J. Opt. Soc. Am. B 25, 1645 (2008)

A. Mafi, J. Lightwave Technol. 30, 2803–2811 (2012)



Single-field model for GRIN fiber

diffraction                    dispersion        index profile             Kerr



Relation between modes

Ryf et al., J. Lightwave Tech. 30, 521 (2012)



Transmittance

Intensity

§ Higher intensity experiences lower loss

§ SA can be material, nonlinear interference,…

§ Self-amplitude modulation

SA
t t

Saturable absorber


