Spatiotemporal Dynamics of Optical Pulse Propagation in Multimode Fibers

F. W. Wise Department of Applied Physics Cornell University

- Introduction to nonlinear wave propagation
- Beam self-cleaning
 Optical thermodynamics
 Measurement of 3D electric fields
- Multimode solitons
- Instabilities
- Spatiotemporal mode-locking
- Current / future directions
 - Emphasis on physics and science
 - Many questions remain
 - References will be provided

Introduction to Nonlinear Wave Propagation

 $P = \chi^{(1)}E + \chi^{(2)}EE + \chi^{(3)}EEE + \dots \quad n_2 \sim \text{Re } \chi^{(3)} \quad n = n_0 + n_2 \text{I}$

self-phase modulation produces new frequencies

Kerr nonlinearity from bound electrons

cross-phase modulation

- produces new frequencies
- couples waves

4-wave mixing

$$\frac{\partial A_p}{\partial z} \propto \sum_{(l,m,n)} S_{plmn}^k A_l A_m A_n^* e^{i(\beta_l + \beta_m - \beta_n - \beta_p)z}$$

$$\Delta\beta = \beta_l + \beta_m - \beta_n - \beta_p$$

allows modes to exchange energy

$$\frac{\partial A(z,t)}{\partial z} + i \frac{\beta^{(2)}}{2} \frac{\partial^2 A(z,t)}{\partial t^2} = i\gamma |A(z,t)|^2 |A(z,t)|^2$$

• Wave usually decays

(anomalous) dispersion cancels nonlinearity for

$$A(t) = A_0 \operatorname{sech}(t/\tau_p) \exp(iz/z_{sol})$$

- Localized wave packets that are stable

In 1D soliton dynamics help us understand

- modulation instability
- modelocked lasers
- continuum generation
- breathers, Peregrine soliton
- rogue waves
- • •

2D and 3D: solitons are unstable

What will happen in multimode fiber ??

Anomalous dispersion: a continuous wave breaks into temporal components

Anomalous dispersion: a continuous wave breaks into temporal components

Multimode waveguides: between 1D and 3D

https://commons.wikimedia.org/wiki/File:Optical_fiber_types.svg

• Little work on *nonlinear* multimode pulse propagation before 2013

Why study propagation in multimode fiber now?

- Little work on *nonlinear* multimode pulse propagation before 2013
- Problem has
 Dispersion
 Linear and nonlinear mode coupling
 Disorder
 Dissipation

With M modes there are

M dispersion curves M² cross-phase modulation terms M⁴ 4-wave mixing interactions

Recent theoretical, computational, experimental advances
 e.g., transfer matrix, principal modes, mode-resolved measurements,...

Carpenter et al.

- Recent theoretical, computational, experimental advances
 e.g., transfer matrix, principal modes, mode-resolved measurements,...
- Relevance to imaging / complex media

Ploschner et al., Nature Photon 2015

Why study propagation in multimode fiber now?

 Recent work on Intermodal nonlinear processes

Nazemosadat J Opt Soc Am B 2016

Propagation in higher-order modes of multimode fiber

Rishøj et al., Optica 2019

Why study propagation in multimode fiber now?

Space division multiplexing in telecom

Agrell et al., J Opt 2016

Laser / amplifier / transmission applications

- Nonlinear optics always requires wave vector (phase) matching
- Short-pulse NLO requires matching of group velocities
- GRIN fiber has very small modal dispersion compared to step-index fibers

Ultrashort pulses in different modes interact strongly

Result is quasi-3D pulse propagation

$$n^{2}(\rho) = n_{0}^{2} \left[1 - 2\Delta \left(\frac{\rho}{R} \right)^{\alpha} \right], \quad \rho \leq R$$
$$= n_{0}^{2} (1 - 2\Delta), \quad \rho > R$$

Modes of GRIN fiber

Propagation constants equally-spaced

Multimode fibers

GRIN fiber

- modes have similar velocities
- allows stronger nonlinear interactions among modes

Beam Self-Cleaning

(spatial organization)

1064 nm

Krupa et al., Nature Photon 2017

P << P_{cr}

negligible dissipation

Krupa et al., Nature Photon 2017

- Kerr nonlinearity underlies self-cleaning
- Why does it occur?
- Role of disorder?

- Speckle-free output with $M^2 \sim 2$
- 80 μJ pulse energy
- Compact, bright, multi-octave continuum

Lopez-Galmiche et al., Opt Lett 2016

How to understand beam-cleaning?

PHYSICAL REVIEW LETTERS 122, 103902 (2019)

Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers

E. V. Podivilov,^{1,2} D. S. Kharenko,^{1,2} V. A. Gonta,¹ K. Krupa,³ O. S. Sidelnikov,^{1,4} S. Turitsyn,^{1,5} M. P. Fedoruk,^{1,4} S. A. Babin,^{1,2} and S. Wabnitz^{1,6}

Spatial beam cleanup by pure Kerr processes in multimode fibers

JESPER LÆGSGAARD DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark (ilag@fotonik.dtu.dk)

PHYSICAL REVIEW LETTERS 122, 123902 (2019)

Dramatic Acceleration of Wave Condensation Mediated by Disorder in Multimode Fibers

Adrien Fusaro,¹ Josselin Garnier,² Katarzyna Krupa,^{3,1} Guy Millot,¹ and Antonio Picozzi¹

$$\Delta\beta=\beta_l+\beta_m-\beta_n-\beta_p$$

- 4WM phase-matched in GRIN fiber
- Power can transfer to lower and higher modes
- Transfer nonreciprocal owing to nonlinear phase

With M modes there are M dispersion curves M² cross-phase modulation terms M⁴ 4-wave mixing interactions

$$\begin{split} \frac{\partial \tilde{A}_{1}(z,\Omega)}{\partial z} &= i \left[\tilde{\beta}^{(1)}(\omega) + i\alpha^{(1)}(\omega)/2 \right] \tilde{A}_{1}(z,\Omega) + i \frac{n_{2}\omega_{0}}{c} (1+\frac{\Omega}{\omega_{0}}) F(2(Q_{1111}^{(1)}R*(A_{1}A_{1}^{*}) + \cdots \\ &+ Q_{1144}^{(1)}R*(A_{4}A_{4}^{*}))A_{1} + 2(Q_{1313}^{(1)}R*(A_{1}A_{3}^{*}) + Q_{1331}^{(1)}R*(A_{3}A_{1}^{*}))A_{3} + (1-f_{R})(Q_{1111}^{(2)}A_{1}A_{1} + \cdots \\ &+ Q_{1144}^{(2)}A_{4}A_{4})A_{1}^{*} + (1-f_{R})(Q_{1313}^{(2)}A_{1}A_{3} + Q_{1331}^{(2)}A_{3}A_{1})A_{3}^{*}) \\ \frac{\partial \tilde{A}_{2}(z,\Omega)}{\partial z} &= i \left[\tilde{\beta}^{(2)}(\omega) + i\alpha^{(2)}(\omega)/2 \right] (\omega)\tilde{A}_{2}(z,\Omega) + i \frac{n_{2}\omega_{0}}{c} (1+\frac{\Omega}{\omega_{0}})F(2(Q_{2211}^{(1)}R*(A_{1}A_{1}^{*}) + \cdots \\ &+ Q_{2244}^{(1)}R*(A_{4}A_{4}^{*}))A_{2} + 2(Q_{2424}^{(1)}R*(A_{2}A_{4}^{*}) + Q_{2442}^{(1)}R*(A_{4}A_{2}^{*}))A_{4} + (1-f_{R})(Q_{2222}^{(2)}A_{2}A_{2} + \cdots \\ &+ Q_{2244}^{(2)}A_{4}A_{4})A_{2}^{*} + (1-f_{R})(Q_{2424}^{(2)}A_{4}A_{4} + Q_{2442}^{(2)}A_{4}A_{2})A_{4}^{*}) \\ \frac{\partial \tilde{A}_{3}(z,\Omega)}{\partial z} &= i \left[\tilde{\beta}^{(3)}(\omega) + i\alpha^{(3)}(\omega)/2 \right] \tilde{A}_{3}(z,\Omega) + i \frac{n_{2}\omega_{0}}{c} (1+\frac{\Omega}{\omega_{0}})F(2(Q_{3311}^{(1)}R*(A_{1}A_{1}^{*}) + \cdots \\ &+ Q_{3344}^{(1)}A_{4}A_{4})A_{3}^{*} + (1-f_{R})(Q_{3131}^{(2)}A_{3}A_{1} + Q_{3113}^{(2)}A_{1}A_{3})A_{1}^{*} \\ \frac{\partial \tilde{A}_{4}(z,\Omega)}{\partial z} &= i \left[\tilde{\beta}^{(4)}(\omega) + i\alpha^{(4)}(\omega)/2 \right] \tilde{A}_{4}(z,\Omega) + i \frac{n_{2}\omega_{0}}{c} (1+\frac{\Omega}{\omega_{0}})F(2(Q_{4411}^{(1)}R*(A_{1}A_{1}^{*}) + \cdots \\ &+ Q_{4444}^{(1)}R*(A_{4}A_{4}^{*}))A_{4} + 2(Q_{412}^{(1)}R*(A_{4}A_{2}^{*}) + Q_{4124}^{(2)}R*(A_{2}A_{4}^{*}))A_{2} + (1-f_{R})(Q_{3333}^{(2)}A_{3}A_{3} + \cdots \\ &+ Q_{4444}^{(1)}R*(A_{4}A_{4}^{*}))A_{4} + 2(Q_{412}^{(1)}R*(A_{4}A_{2}^{*}) + Q_{4224}^{(2)}R*(A_{2}A_{4}^{*}))A_{2} + (1-f_{R})(Q_{3333}^{(2)}A_{3}A_{3} + \cdots \\ &+ Q_{4444}^{(1)}R*(A_{4}A_{4}^{*}))A_{4} + 2(Q_{412}^{(1)}R*(A_{4}A_{2}^{*}) + Q_{4224}^{(2)}R*(A_{2}A_{4}^{*}))A_{2} + (1-f_{R})(Q_{4411}^{(2)}A_{4}A_{4} + \cdots \\ &+ Q_{4444}^{(1)}A_{4}^{*} + (1-f_{R})(Q_{422}^{(2)}A_{4}A_{2} + Q_{4224}^{(2)}A_{2}A_{4})A_{2}^{*}). \end{split}$$

With M modes there are

M dispersion curves M² cross-phase modulation terms M⁴ 4-wave mixing interactions

Picozzi et al., "Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics," *Phys. Rep.* 542, 1 (2014)

- M total number of modes $|c_i|^2$ mode occupancies
- β_i propagation constant

M modes

 $S = \sum \ln |c_i|^2$

Power $P = \sum_{i=1}^{n} |c_i|^2$

Hamiltonian $H = \sum \beta_i |c_i|^2$

Internal energy U = -H

Entropy

entropy maximization

equilibrium state Rayleigh–Jeans distribution

$$|c_i|^2 = -\frac{T}{\beta_i + \mu}$$

T and μ optical thermodynamic parameters

$$U - \mu P = MT$$

(*T* has nothing to do with ordinary temperature)

Wu and Christodoulides, Nature Photonics 13, 776 (2019)

Nonlinearity mediates thermalization

- 4WM phase-matched in GRIN fiber
- Measurement of distribution requires measurement of \vec{E}

 $E(x,y) = |\mathcal{R}(x,y)|^2 + |\mathcal{O}(x,y)|^2 + \mathcal{O}^*(x,y)\mathcal{R}(x,y) + \mathcal{O}(x,y)\mathcal{R}^*(x,y)$

- Spatial phase from fringes
- Spectral phase from FROG (Pariente et al., *Nature Photon* 2016)
- Field decomposed into eigenmode basis

Direct observation of Rayleigh-Jeans distribution

0

0.1

Ω

0

18 kW

10

20

30

β (mm⁻¹)

40

50

60 70

near-field

beam profile

Optical entropy is maximized in Kerr beam-cleaning

10

20

30

40

β (mm⁻¹)

50

60

Pourbeyram et al., arXiv

0.05

0

0

70

Other processes

- Carnot cycles
- Optical cooling

. .

Isentropic processes

Future: design of high-performance light sources

Wu and Christodoulides, Nature Photonics 13, 776 (2019)

Multimode solitons (spatiotemporal organization)

Tme domain: linear propagation

Multimode soliton formation

Excite 3 lowest modes

- For E < 0.1 nJ pulse disperses
- 0.5 nJ pulse energy

3 modes: theory

• Launch 0.5 nJ / 300 fs

Intuitive picture

Linear propagation

Intuitive picture

Multimode soliton

- Solitons with up to 10 modes generated
- Solitons with more modes require greater nonlinear phase / energy

Renninger et al., Nature Commun 2013 Wright et al., Opt Exp 2015

Higher energy: multimode soliton fission

Raman solitons in few-mode fiber

Raman solitons in few-mode fiber

Raman solitons in few-mode fiber

More modes: Zitelli et al., Opt Express 28, 20473–20488 (2020)

- Does XPM play a role after soliton formation?
- What is the final state? Single-mode (Raman) soliton?

Zitelli et al. Photonics Research 2021

Can "light bullets" form in multimode fiber?

Instabilities (spatiotemporal organization)

4WM can transfer energy between waves

 $2k_{pump} = k_{signal} + k_{idler}$

4WM can transfer energy between waves

$$2k_{pump} = k_{signal} + k_{idler} + \frac{2\pi m}{Z_p}$$

- ----

Intensity [dB]

Krupa et al., Phys Rev Lett 2016

Nanosecond input pulses

- "Geometric parametric instability"
- 300 THz frequency range

Perturbed solitons can emit dispersive waves

 $k_{sol} = k_{dis}$

Perturbed solitons can emit dispersive waves

$$k_{sol} = k_{dis} + \frac{2\pi m}{Z_p}$$

Controllable continuum

Controllable continuum

• Perturbed soliton adjusts to reach $A_0 \tau_p = \sqrt{\frac{\beta_2}{\gamma}}$

and radiates dispersive wave

Periodic perturbation (period = Z_p)
Resonant energy transfer when wave vectors match

$$k_{sol}$$
 - $k_{dis} = 2m\pi/Z_p$

$$\Omega_{res} = \frac{1}{\tau} \sqrt{\frac{8Z_0 m}{Z_p} - 1}$$

Gordon, J Opt Soc Am B 1992

• Perturbed soliton adjusts to reach $A_0 \tau_p = \sqrt{\frac{\beta_2}{\gamma}}$

and radiates dispersive wave

Periodic perturbation (period = Z_p)
Resonant energy transfer when wave vectors match

$$k_{sol} - k_{dis} = 2m\pi/Z_p$$

$$\Omega_{res} = \frac{1}{\tau} \sqrt{\frac{8Z_0 m}{Z_p} - 1}$$

Kelly, Electron Lett 1992

- Simulation, experiment and analytic theory agree well
- Self-imaging perturbs the field
- 300 THz frequency range

Wright, Wabnitz et al., PRL 2015

Spatiotemporal Mode-Locking in Fiber Lasers

Ultrafast science

Femtochemistry

Zewail, J. Chem. Ed. 78, 739 (2001)

Frequency Combs

www.physics.ubc.ca/~djjones

Image credit: University of Oregon Physics

Transverse modes

Can we lock transverse and longitudinal modes?

Resonant lasing frequencies

Linear dispersive effects

What do we need for **3D** mode-locking?

- Low spatiotemporal dispersion
- Phase-sensitive nonlinear interactions between 3D modes
- A *spatiotemporal* saturable absorber

Parabolic-index fiber makes dispersions comparable

- Parabolic-index fiber makes dispersions comparable
- Temporal profile

Normal group-velocity dispersion Strong spectral filtering

Spatial profile

Strong spatial filtering promotes multiple transverse modes

Example simulation

Mode-locked laser

Experiment

Mode-locked laser

Wavelength (nm)

3D characterization

Why is it important?

Why is it important?

- There are many new mode-locked states
- States and phenomena that have no analogs in 1D involve up to 10⁸ modes
- Theoretical understanding is crude

Why is it important?

- There are many new mode-locked states
- States and phenomena that have no analogs in 1D involve up to 10⁸ modes
- Theoretical understanding is crude

Space-time mode-locking may offer routes to

- 3D shaped ultrafast pulses, pulse sequences
- Higher peak power and intensity than existing lasers

Wright et al., Science 358, 94 (2017)

Frequently-asked question:

What's M^2 ?

Tegin et al., Advanced Photonics 2, 056005 (2020)

High-energy solutions

- Find (multimode) states with ~gaussian-beam outputs
- Possible formation of nonlinear mode

Theory of spatiotemporal mode-locking (if time permits)

Modeling: a simple view of an oscillator

 $\hat{C}(\hat{G},\hat{T},\hat{N},\hat{SA},\hat{F})$ E(x,y,t)

 $\hat{C}E_i(x, y, t) \rightarrow E_{i+1}(x, y, t)$

Ĉ(Ĝ,Ť,Ñ,<mark>Ŝ</mark>Ă,Ê) E(x,y,t) $\hat{C}E_i(x, y, t) \rightarrow E_{i+1}(x, y, t)$

What emerges asymptotically? Why?

Identification of critical effects: attractors

Attractor for spatial filter

• Attractor for saturable absorber

• • • • • • • • • • • •

• Attractor for gain extraction

Wright et al., Nature Phys. 16, 565 (2020)

Saturable absorber favors high intensity => few modes

Gain extraction favors many modes

End of summary of theory

- anomalous dispersion multimode soliton laser
- step-index fiber
- multi-core fiber
- solid-state gain media
- Raman or parametric gain
- synchronous pumping to select modes

Interesting directions for MM NLO

The role of disorder in MM nonlinear optics

- Disorder can enhance multimode nonlinear optical effects
- Much interest for telecom

MM solitons

Manakov system

increasing disorder

The role of disorder in MM nonlinear optics

- Disorder can enhance multimode nonlinear optical effects
- Much interest for telecom

Weak Coupling

MM solitons

Manakov system

increasing disorder

-15

-10

-5

0 5

t/τ

10

15

20 0

increasing disorder

.15

-10

-5

0

t/τ

10

15

20 0

The role of disorder in MM nonlinear optics

- Disorder can enhance multimode nonlinear optical effects
- Much interest for telecom

increasing disorder

Wave-front shaping

Control of continuum

Tzeng et al., Nature Photon 2018

Control of multimode lasing

Wei et al., Light Sci Appl 2020

MM propagation in hollow-core fibers

- Isolated examples since 2000
- Multidimensional solitary states

Safaei, Fan et al., Nature Photon 2020

Massively-parallel code for solving GMMNLSE (with GPU)

https://wise.research.engineering.cornell.edu/ or https://github.com/wiselabaep/gmmnlse-solver-final

Wright *et al.*, "Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial and Outlook," *IEEE J. Select Topics Quantum Electron.* 24, 5100516 (2018)

Nonlinear Fiber Optics 6th Ed. (2019) by G. Agrawal, Ch 14

Reserve slides

Nonlinear Fiber Optics 6th Ed. by G. Agrawal (Ch 14)

Multimode soliton formation, fission Renninger et al., Nature Commun 2013 Wright et al., Opt Exp 2015 Related: Buch and Agrawal, Opt Lett 2016 Buch and Agrawal, JOSA B 2016

Controllable spatiotemporal nonlinear processes

Wright et al., Nature Photon 2015

Spatiotemporal generation of dispersive waves

Wright et al., Phys Rev Lett 2015

Space domain: linear wave propagation

beam spreads owing to diffraction

nonlinear phase shift produces self-focusing

nonlinear phase shift produces self-focusing

nonlinear phase shift produces self-focusing

Spatial soliton

Spatial soliton

• 2D: balance is unstable in cubic nonlinear media

Modulation instability (spatial)

• A beam breaks into its component (spatial) solitons

Spatiotemporal solitons

phase modulation balances dispersion and self-focusing balances diffraction

- "light bullet" (Silberberg 1990)
- unstable (χ⁽³⁾)

"GMMNLSE"

$$\partial_z A_p(z,t) = i \left(\beta_0^{(p)} - \Re \left[\beta_0^{(0)} \right] \right) A_p - \left(\beta_1^{(p)} - \Re \left[\beta_1^{(0)} \right] \right) \frac{\partial A_p}{\partial t} + \sum_{m=2}^3 i^{m+1} \frac{\beta_m}{m!} \partial_t^m A_p$$

modal wavenumber mismatch modal velocity mismatch group velocity dispersion

$$+i\frac{n_{2}\omega_{o}}{c}\left(1+\frac{i}{\omega_{o}}\partial_{t}\right)\sum_{l,m,n}\left\{\left(1-f_{R}\right)S_{plmn}^{k}A_{l}A_{m}A_{n}^{*}+f_{R}A_{l}S_{plmn}^{R}\int_{-\infty}^{t}d\tau A_{m}(z,t-\tau)A_{n}^{*}(z,t-\tau)h_{R}(\tau)\right\}$$
shock
Kerr
Raman

F. Poletti and P. Horak, J. Opt. Soc. Am. B 25, 1645 (2008)

A. Mafi, J. Lightwave Technol. 30, 2803–2811 (2012)

$$\begin{split} \frac{\partial A}{\partial z} &= \frac{i}{2k_0} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) - i \frac{\beta_2}{2} \frac{\partial^2 A}{\partial t^2} - i \frac{k_0 \Delta}{R^2} (x^2 + y^2) A + i \gamma |A|^2 A \\ & \text{diffraction} & \text{dispersion} & \text{index profile} & \text{Kerr} \end{split}$$

Fig. 1. Relation between the LP modes and the real waveguide modes HE_{11x} , HE_{11y} , TE_{01} , TM_{01} , HE_{21a} , and HE_{21b} of the six-mode FMF.

Ryf et al., J. Lightwave Tech. 30, 521 (2012)

- Higher intensity experiences lower loss
- SA can be material, nonlinear interference,...
- Self-amplitude modulation